Product Citations: 6

Butyrate Protects against Clostridium difficile Infection by Regulating Bile Acid Metabolism.

In Microbiology Spectrum on 17 August 2023 by Wang, S., Xiang, L., et al.

Clostridium difficile infection (CDI) is caused by a prevalent nosocomial enteric pathogen, leading to high morbidity and mortality. CDI recurrence after antibiotic treatment is high; therefore, it is necessary to develop novel therapeutics against this enteric pathogen. Butyrate is used to treat many diseases because it provides energy, has anti-inflammatory properties, and maintains intestinal barrier function. An anti-CDI effect for butyrate has been reported; however, the specific mechanism remains elusive. This study aimed to explore the potential role and mechanism of butyrate in the treatment of CDI. Using a CDI mouse model, we found that butyrate significantly inhibited CDI development by regulating bile acid metabolism. Dysregulation of fecal bile acid was significantly higher, and levels of short-chain fatty acids were significantly lower in patients with CDI than those in controls. In CDI mice, butyrate exhibited a protective role by enhancing barrier protection, exerting anti-inflammatory effects, and regulating bile acid metabolism. Butyrate treatment also regulated the production of bile salt hydrolase (BSH) flora and activated farnesoid X receptor (FXR), and its therapeutic effects were reduced in CDI mice treated with BSH or FXR inhibitors. Thus, butyrate treatment may serve as a novel therapeutic approach for patients with CDI. IMPORTANCE Here, we show that levels of fecal short-chain fatty acids (SCFAs), particularly butyrate, are reduced, and normal colon structure is damaged in patients with CDI compared with those in healthy individuals. Bile acid (BA) metabolic disorder in patients with CDI is characterized by increased primary BA levels and decreased secondary BAs. In mice, butyrate alters BA metabolism in CDI and may play a vital role in CDI treatment by promoting secondary BA metabolism. Lastly, butyrate-mediated therapeutic effects in CDI require FXR. Our findings demonstrate that butyrate treatment significantly decreases the severity of CDI-induced colitis in mice and affects BA metabolism and FXR activation, which provides a potential alternative treatment for CDI.

  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Cell Biology
  • Immunology and Microbiology

Antigen presentation between T cells drives Th17 polarization under conditions of limiting antigen.

In Cell Reports on 16 March 2021 by Boccasavia, V. L., Bovolenta, E. R., et al.

T cells form immunological synapses with professional antigen-presenting cells (APCs) resulting in T cell activation and the acquisition of peptide antigen-MHC (pMHC) complexes from the plasma membrane of the APC. They thus become APCs themselves. We investigate the functional outcome of T-T cell antigen presentation by CD4 T cells and find that the antigen-presenting T cells (Tpres) predominantly differentiate into regulatory T cells (Treg), whereas T cells that have been stimulated by Tpres cells predominantly differentiate into Th17 pro-inflammatory cells. Using mice deficient in pMHC uptake by T cells, we show that T-T antigen presentation is important for the development of experimental autoimmune encephalitis and Th17 cell differentiation in vivo. By varying the professional APC:T cell ratio, we can modulate Treg versus Th17 differentiation in vitro and in vivo, suggesting that T-T antigen presentation underlies proinflammatory responses in conditions of antigen scarcity.Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

DGT, a novel heterocyclic diterpenoid, effectively suppresses psoriasis via inhibition of STAT3 phosphorylation.

In British Journal of Pharmacology on 1 February 2021 by Bian, G., Wang, L., et al.

Psoriasis is a chronic immune-mediated inflammatory skin disease that easily recurs and is difficult to cure. DGT is a novel synthetic heterocyclic diterpenoid, whose structure has not been previously reported. We have investigated the action of DGT against psoriasis, specifically the hyperproliferation of epidermal keratinocytes, angiogenesis and pathogenic inflammatory responses.
We investigated its pharmacokinetics in skin after topical administration. We characterized its pharmacological actions in vitro and in vivo using cell proliferation assay, cell apoptosis assay, diethylstilbestrol-induced mouse vaginal epithelial cell mitosis model, tube formation assay, cell migration assay, chick embryonic chorioallantoic membrane (CAM) assay, histological, flow cytometric analysis and imiquimod (IMQ)-induced psoriasis-like model.
DGT was found to be mainly distributed in the epidermis and dermis, which indicated that DGT was suitable as a topical treatment. DGT inhibited cell proliferation and induced apoptotic cell death of keratinocytes in vitro and in vivo. Moreover, DGT inhibited endothelial cell proliferation, tube formation and migration of in vitro angiogenesis, as well as in vivo CAM angiogenesis. In an IMQ-induced psoriasis-like skin inflammation murine model, topical application of DGT ameliorated keratinocyte proliferation and inflammatory response, especially in IL-17-related psoriasiform dermatitis. Furthermore, our results demonstrated that DGT prevented these pathological processes of psoriasis through suppression of STAT3 phosphorylation.
DGT has great potential as a novel therapeutic agent for the treatment of psoriatic skin disease.
© 2020 The British Pharmacological Society.

  • Pharmacology

Poly(ADP-ribose) polymerase-1 (PARP-1) plays a critical role in inflammatory pathways. The PARP-1 inhibitor, 5-aminoisoquinolinone (5-AIQ), has been demonstrated to exert significant pharmacological effects. The present study aimed to further examine the potential mechanisms of 5-AIQ in a mouse model of dextran sodium sulfate (DSS)-induced colitis. Colitis conditions were assessed by changes in weight, disease activity index, colon length, histopathology and pro-inflammatory mediators. The colonic expression of PARP/NF-κB and STAT3 pathway components was measured by western blot analysis. Flow cytometry was used to analyze the proportion of T helper 17 cells (Th17) and regulatory T cells (Tregs) in the spleen. Western blot analysis and reverse transcription-quantitative PCR were employed to determine the expression of the transcription factors retinoic acid-related orphan receptor and forkhead box protein P3. The results demonstrated that 5-AIQ reduced tissue damage and the inflammatory response in mice with experimental colitis. Moreover, 5-AIQ increased the proportion of Treg cells and decreased the percentage of Th17 cells in the spleen. Furthermore, following 5-AIQ treatment, the main components of the PARP/NF-κB and STAT3 pathways were downregulated. Collectively, these results demonstrate that the PARP-1 inhibitor, 5-AIQ, may suppress intestinal inflammation and protect the colonic mucosa by modulating Treg/Th17 immune balance and inhibiting PARP-1/NF-κB and STAT3 signaling pathways in mice with experimental colitis.
Copyright: © Peng et al.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Yangyin Qingre Huoxue Method in Traditional Chinese Medicine Ameliorates Atherosclerosis in ApoE-/- Mice Suffering from High-Fat Diet and HSP65 Aggression.

In Evidence-based Complementary and Alternative Medicine : eCAM on 5 February 2019 by Qiu, R., Long, J., et al.

Atherosclerosis (AS) is a complicated arterial disease resulting from abnormal lipid deposition and inflammatory injury, which is attributed to Yin deficiency, accumulation of heat materials, and stasis of blood flow in Traditional Chinese Medicine (TCM) theory. Thus, according to TCM theory, the method of nourishing Yin (Yangyin), clearing away heat (Qingre), and promoting blood circulation (Huoxue) is a reasonable strategy, which has achieved remarkable clinical efficacy in the treatment of AS, but the mechanisms remain to be known. In this study, we evaluated the effects of Yangyin Qingre Huoxue Prescription (YQHP) on AS in ApoE-/- mice suffering from a high-fat diet and heat shock protein (HSP65) attack. YQHP regulated levels of blood lipids and inflammation-linked cytokines as well as Th17/Treg ratio in peripheral blood. Suppressed IL-6-p-STAT3 signaling and restored IL-2-p-STAT5 signaling in the presence of YQHP may partake in the regulation of Th17 and Treg differentiation. Moreover, YQHP modulated transcriptional levels of costimulator CD80 in aortas as well corresponding to the downregulation of GM-CSF in serum and CD3 expression in CD4+ T cells, which might indicate the potential of YQHP to regulate antigen presenting cells. All these effects eventually promoted the improvement of atherosclerotic lesions. In addition, YQHP promoted less monocyte infiltration in the liver and lower levels of AST, ALT, and AKP production than simvastatin. Conclusively, lipid-regulating and anti-inflammatory functions mediated by YQHP with lower hepatotoxicity than simvastatin hindered the progression of HSP65 aggravated AS in ApoE-/- mice, indicating the effectiveness of Yangyin Qingre Huoxue Method in the treatment of AS.

  • FC/FACS
  • Mus musculus (House mouse)
View this product on CiteAb