Product Citations: 19

Decreased non-neurogenic acetylcholine in bone marrow triggers age-related defective stem/progenitor cell homing.

In Nature Communications on 1 July 2025 by Morikawa, T., Fujita, S., et al.

Age-related decline in the ability of bone marrow (BM) to recruit transplanted hematopoietic stem and progenitor cells (HSPCs) limits the potential of HSPC-based medicine. Using in vivo imaging and manipulation combined with integrative metabolomic analyses, we show that, with aging, degradation of non-neurogenic acetylcholine disrupts the local Chrm5-eNOS-nitric oxide signaling, reducing arterial dilation and decreasing both BM blood flow and sinusoidal wall shear stress. Consequently, aging BM microenvironment impairs transendothelial migration of transplanted HSPCs, and their BM homing efficiency is reduced, mediated by decreased activation of Piezo1. Notably, pharmacological activation of Piezo1 improves HSPC homing efficiency and post-transplant survival of aged recipients. These findings suggest that age-related dysregulation of local arteries leads to impaired HSPC homing to BM by decreasing shear stress. Modulation of these mechanisms may improve the efficacy and safety of clinical transplantation in elderly patients.
© 2025. The Author(s).

Rationale: Inflammatory bowel disease (IBD) is a relapsing and idiopathic disorder. The low therapeutic efficacy of IBD urgently prompts us to seek new treatment methods. Methods and Results: In this study, we report an adipose-derived mesenchymal stem cell (AT-MSC)-based treatment strategy in which AT-MSCs specifically deliver BMP inhibitor Grem1 and anti-inflammatory factor IL-10 to inflammatory colon tissues in SETD2 deficient dextran sulfate sodium (DSS)-induced colitis mouse models. Targeted delivery of Grem1 reduced colitis by promoting intestinal stem cell regeneration and enhancing mucosal regenerative capacity. Furthermore, targeted delivery of IL-10 reduced colitis by reducing inflammatory cytokines. Conclusion: Our AT-MSCs based therapeutic strategy effectively mitigated IBD. This study has deepened our understanding of IBD therapy and provided a theoretical foundation for its clinical treatment.
© The author(s).

  • Immunology and Microbiology
  • Stem Cells and Developmental Biology

Monomeric CXCL12-Engineered Adipose-Derived Stem Cells Transplantation for the Treatment of Ischemic Stroke.

In International Journal of Molecular Sciences on 8 January 2024 by Zheng, H., Khan, H., et al.

Adipose-derived stem cells (ASCs) possess therapeutic potential for ischemic brain injury, and the chemokine CXCL12 has been shown to enhance their functional properties. However, the cumulative effects of ASCs when combined with various structures of CXCL12 on ischemic stroke and its underlying molecular mechanisms remain unclear. In this study, we genetically engineered mouse adipose-derived ASCs with CXCL12 variants and transplanted them to the infarct region in a mice transient middle cerebral artery occlusion (tMCAO) model of stroke. We subsequently compared the post-ischemic stroke efficacy of ASC-mCXCL12 with ASC-dCXCL12, ASC-wtCXCL12, and unmodified ASCs. Neurobehavior recovery was assessed using modified neurological severity scores, the hanging wire test, and the elevated body swing test. Changes at the tissue level were evaluated through cresyl violet and immunofluorescent staining, while molecular level alterations were examined via Western blot and real-time PCR. The results of the modified neurological severity score and cresyl violet staining indicated that both ASC-mCXCL12 and ASC-dCXCL12 treatment enhanced neurobehavioral recovery and mitigated brain atrophy at the third and fifth weeks post-tMCAO. Additionally, we observed that ASC-mCXCL12 and ASC-dCXCL12 promoted angiogenesis and neurogenesis, accompanied by an increased expression of bFGF and VEGF in the peri-infarct area of the brain. Notably, in the third week after tMCAO, the ASC-mCXCL12 exhibited superior outcomes compared to ASC-dCXCL12. However, when treated with the CXCR4 antagonist AMD3100, the beneficial effects of ASC-mCXCL12 were reversed. The AMD3100-treated group demonstrated worsened neurological function, aggravated edema volume, and brain atrophy. This outcome is likely attributed to the interaction of monomeric CXCL12 with CXCR4, which regulates the recruitment of bFGF and VEGF. This study introduces an innovative approach to enhance the therapeutic potential of ASCs in treating ischemic stroke by genetically engineering them with the monomeric structure of CXCL12.

  • Mus musculus (House mouse)
  • Cardiovascular biology
  • Stem Cells and Developmental Biology

Splicing factor deficits render hematopoietic stem and progenitor cells sensitive to STAT3 inhibition.

In Cell Reports on 13 December 2022 by Potts, K. S., Cameron, R. C., et al.

Hematopoietic stem and progenitor cells (HSPCs) sustain lifelong hematopoiesis. Mutations of pre-mRNA splicing machinery, especially splicing factor 3b, subunit 1 (SF3B1), are early lesions found in malignancies arising from HSPC dysfunction. However, why splicing factor deficits contribute to HSPC defects remains incompletely understood. Using zebrafish, we show that HSPC formation in sf3b1 homozygous mutants is dependent on STAT3 activation. Clinically, mutations in SF3B1 are heterozygous; thus, we explored if targeting STAT3 could be a vulnerability in these cells. We show that SF3B1 heterozygosity confers heightened sensitivity to STAT3 inhibition in zebrafish, mouse, and human HSPCs. Cells carrying mutations in other splicing factors or treated with splicing modulators are also more sensitive to STAT3 inhibition. Mechanistically, we illustrate that STAT3 inhibition exacerbates aberrant splicing in SF3B1 mutant cells. Our findings reveal a conserved vulnerability of splicing factor mutant HSPCs that could allow for their selective targeting in hematologic malignancies.Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)

Adipose-derived stem cells (ADSCs) and their extracellular vesicles (EVs) have therapeutic potential in ischemic brain injury, but the underlying mechanism is poorly understood. The current study aimed to explore the contribution of miRNAs in ADSC-EVs to the treatment of cerebral ischemia.
After the intravenous injection of ADSC-EVs, therapeutic efficacy was evaluated by neurobehavioral tests and brain atrophy volume. The polarization of microglia was assessed by immunostaining and qPCR. We further performed miRNA sequencing of ADSC-EVs and analyzed the relationship between the upregulated miRNAs in ADSC-EVs and microglial polarization-related proteins using Ingenuity Pathway Analysis (IPA).
The results showed that ADSC-EVs reduced brain atrophy volume, improved neuromotor and cognitive functions after mouse ischemic stroke. The loss of oligodendrocytes was attenuated after ADSC-EVs injection. The number of blood vessels, as well as newly proliferated endothelial cells in the peri-ischemia area were higher in the ADSC-EVs treated group than that in the PBS group. In addition, ADSC-EVs regulated the polarization of microglia, resulting in increased repair-promoting M2 phenotype and decreased pro-inflammatory M1 phenotype. Finally, STAT1 and PTEN were highlighted as two downstream targets of up-regulated miRNAs in ADSC-EVs among 85 microglia/macrophage polarization related proteins by IPA. The inhibition of STAT1 and PTEN by ADSC-EVs were confirmed in cultured microglia.
In summary, ADSC-EVs reduced ischemic brain injury, which was associated with the regulation of microglial polarization. miRNAs in ADSC-EVs partly contributed to their function in regulating microglial polarization by targeting PTEN and STAT1.
© 2021. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Cardiovascular biology
  • Neuroscience
  • Stem Cells and Developmental Biology
View this product on CiteAb