Product Citations: 76

Staphylococcus aureus can induce trained immunity in murine macrophages offering protection against repeat exposure during S. aureus skin infection. Here we demonstrate that S. aureus exposure can result in non-specific trained immunity in humans and mice, enhancing macrophage responsiveness and bacterial clearance in a heterologous challenge. In humans, the enhanced macrophage responsiveness was accompanied by metabolic changes and histone modification. In mice, the enhanced responsiveness of macrophages occurred in conjunction with enhanced myelopoiesis. This report provides further insights on the host's response to the bacterium S. aureus, indicating that exposure to this organism induces heterologous protection against subsequent gram-negative infection that is provided by macrophages. These findings support the hypothesis that S. aureus has evolved to develop a mutualistic relationship with the host, imbuing the host with enhanced capacity to protect itself from attack by alternative pathogens, while potentially allowing S. aureus to exert its dominance within its niche.
© 2024 The Authors.

  • Immunology and Microbiology

Arsenic-induced transition of thymic inflammation-to-fibrosis involves Stat3-Twist1 interaction: Melatonin to the rescue.

In BioFactors (Oxford, England) on 4 August 2024 by Das, A., Mitra, A., et al.

Groundwater arsenic is a notorious toxicant and exposure to environmentally relevant concentrations persists as a healthcare burden across the world. Arsenic has been reported to jeopardize the normal functioning of the immune system, but there are still gaps in the understanding of thymic T cell biology. Immunotoxic influence of arsenic in thymic integrity demands a potent restorative molecule. The objectives of this study were to examine key signaling cross-talks associated with arsenic-induced immune alterations in the thymus and propose melatonin as a potential candidate against immunological complications arising from arsenic exposure. Swiss albino mice were exposed to sodium arsenite (0.05 mg/L; in drinking water) and melatonin (IP:10 mg/kg BW) for 28 days. Melatonin successfully protected thymus from arsenic-mediated tissue degeneration and maintained immune homeostasis including T cell maturation and proliferation by mitigating oxidative stress through Nrf2 upregulation. Additionally, melatonin exerted ameliorative effect against arsenic-induced apoptosis and inflammation by inhibiting p53-mediated mitochondrial cell death pathway and NF-κB-p65/STAT3-mediated proinflammatory pathway, respectively. For the first time, we showed that arsenic-induced profibrotic changes were inhibited by melatonin through targeting of inflammation-associated EMT. Our findings clearly demonstrate that melatonin can be a viable and promising candidate in combating arsenic-induced immune toxicity with no collateral damage, making it an important research target.
© 2024 International Union of Biochemistry and Molecular Biology.

  • Immunology and Microbiology

Cryptotanshinone promotes brown fat activity by AMPK activation to inhibit obesity.

In Nutrition Research and Practice on 1 August 2024 by Ni, J., Ye, A., et al.

Activating brown adipose tissue (BAT) and browning of white adipose tissue (WAT) can protect against obesity and obesity-related metabolic conditions. Cryptotanshinone (CT) regulates lipid metabolism and significantly ameliorates insulin resistance. Adenosine-5'-monophosphate (AMP)-activated protein kinase (AMPK), a receptor for cellular energy metabolism, is believed to regulate brown fat activity in humans.
The in vivo study included high-fat-fed obese mice administered orally 200/400 mg/kg/d CT. They were evaluated through weight measurement, the intraperitoneal glucose tolerance test (IPGTT), intraperitoneal insulin tolerance test (IPITT), cold stimulation test, serum lipid (total cholesterol, triglycerides, and low-density lipoprotein) measurement, hematoxylin and eosin staining, and immunohistochemistry. Furthermore, the in vitro study investigated primary adipose mesenchymal stem cells (MSCs) with incubation of CT and AMPK agonists (acadesine)/inhibitor (Compound C). Cells were evaluated using Oil Red O staining, Alizarin red staining, flow cytometry, and immunofluorescence staining to identify and observe the osteogenic versus adipogenic differentiation. Quantitative real-time polymerase chain reaction and the Western blot were used to observe related gene expression.
In the diet-induced obesity mouse model mice CT suppressed body weight, food intake, glucose levels in the IPGTT and IPTT, serum lipids, the volume of adipose tissue, and increased thermogenesis, uncoupling protein 1, and the AMPK pathway expression. In the in vitro study, CT prevented the formation of lipid droplets from MSCs while activating brown genes and the AMPK pathway. AMPK activator enhanced CT's effects, while the AMPK inhibitor reversed the effects of CT.
CT promotes adipose tissue browning to increase body thermogenesis and reduce obesity by activating the AMPK pathway. This study provides an experimental foundation for the use of CT in obesity treatment.
©2024 The Korean Nutrition Society and the Korean Society of Community Nutrition.

  • FC/FACS
  • Mus musculus (House mouse)

Increasing evidence suggests that the muscle stem cell (MuSC) pool is heterogeneous. In particular, a rare subset of PAX7-positive MuSCs that has never expressed the myogenic regulatory factor MYF5 displays unique self-renewal and engraftment characteristics. However, the scarcity and limited availability of protein markers make the characterization of these cells challenging. Here, we describe the generation of StemRep reporter mice enabling the monitoring of PAX7 and MYF5 proteins based on equimolar levels of dual nuclear fluorescence. High levels of PAX7 protein and low levels of MYF5 delineate a deeply quiescent MuSC subpopulation with an increased capacity for asymmetric division and distinct dynamics of activation, proliferation, and commitment. Aging primarily reduces the MYF5Low MuSCs and skews the stem cell pool toward MYF5High cells with lower quiescence and self-renewal potential. Altogether, we establish the StemRep model as a versatile tool to study MuSC heterogeneity and broaden our understanding of mechanisms regulating MuSC quiescence and self-renewal in homeostatic, regenerating, and aged muscles.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Stem Cells and Developmental Biology

Trigonelline is an NAD+ precursor that improves muscle function during ageing and is reduced in human sarcopenia.

In Nature Metabolism on 1 March 2024 by Membrez, M., Migliavacca, E., et al.

Mitochondrial dysfunction and low nicotinamide adenine dinucleotide (NAD+) levels are hallmarks of skeletal muscle ageing and sarcopenia1-3, but it is unclear whether these defects result from local changes or can be mediated by systemic or dietary cues. Here we report a functional link between circulating levels of the natural alkaloid trigonelline, which is structurally related to nicotinic acid4, NAD+ levels and muscle health in multiple species. In humans, serum trigonelline levels are reduced with sarcopenia and correlate positively with muscle strength and mitochondrial oxidative phosphorylation in skeletal muscle. Using naturally occurring and isotopically labelled trigonelline, we demonstrate that trigonelline incorporates into the NAD+ pool and increases NAD+ levels in Caenorhabditis elegans, mice and primary myotubes from healthy individuals and individuals with sarcopenia. Mechanistically, trigonelline does not activate GPR109A but is metabolized via the nicotinate phosphoribosyltransferase/Preiss-Handler pathway5,6 across models. In C. elegans, trigonelline improves mitochondrial respiration and biogenesis, reduces age-related muscle wasting and increases lifespan and mobility through an NAD+-dependent mechanism requiring sirtuin. Dietary trigonelline supplementation in male mice enhances muscle strength and prevents fatigue during ageing. Collectively, we identify nutritional supplementation of trigonelline as an NAD+-boosting strategy with therapeutic potential for age-associated muscle decline.
© 2024. The Author(s).

  • Mus musculus (House mouse)
View this product on CiteAb