Product Citations: 18

On-Chip Neural Induction Boosts Neural Stem Cell Commitment: Toward a Pipeline for iPSC-Based Therapies.

In Advanced Science (Weinheim, Baden-Wurttemberg, Germany) on 1 July 2024 by Jain, S., Voulgaris, D., et al.

The clinical translation of induced pluripotent stem cells (iPSCs) holds great potential for personalized therapeutics. However, one of the main obstacles is that the current workflow to generate iPSCs is expensive, time-consuming, and requires standardization. A simplified and cost-effective microfluidic approach is presented for reprogramming fibroblasts into iPSCs and their subsequent differentiation into neural stem cells (NSCs). This method exploits microphysiological technology, providing a 100-fold reduction in reagents for reprogramming and a ninefold reduction in number of input cells. The iPSCs generated from microfluidic reprogramming of fibroblasts show upregulation of pluripotency markers and downregulation of fibroblast markers, on par with those reprogrammed in standard well-conditions. The NSCs differentiated in microfluidic chips show upregulation of neuroectodermal markers (ZIC1, PAX6, SOX1), highlighting their propensity for nervous system development. Cells obtained on conventional well plates and microfluidic chips are compared for reprogramming and neural induction by bulk RNA sequencing. Pathway enrichment analysis of NSCs from chip showed neural stem cell development enrichment and boosted commitment to neural stem cell lineage in initial phases of neural induction, attributed to a confined environment in a microfluidic chip. This method provides a cost-effective pipeline to reprogram and differentiate iPSCs for therapeutics compliant with current good manufacturing practices.
© 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.

  • Mus musculus (House mouse)
  • Stem Cells and Developmental Biology

Preclinical transplantations using human neuroepithelial stem (NES) cells in spinal cord injury models have exhibited promising results and demonstrated cell integration and functional improvement in transplanted animals. Previous studies have relied on the generation of research grade cell lines in continuous culture. Using fresh cells presents logistic hurdles for clinical transition regarding time and resources for maintaining high quality standards. In this study, we generated a good manufacturing practice (GMP) compliant human iPS cell line in GMP clean rooms alongside a research grade iPS cell line which was produced using standardized protocols with GMP compliant chemicals. These two iPS cell lines were differentiated into human NES cells, from which six batches of cell therapy doses were produced. The doses were cryopreserved, thawed on demand and grafted in a rat spinal cord injury model. Our findings demonstrate that NES cells can be directly grafted post-thaw with high cell viability, maintaining their cell identity and differentiation capacity. This opens the possibility of manufacturing off-the-shelf cell therapy products. Moreover, our manufacturing process yields stable cell doses with minimal batch-to-batch variability, characterized by consistent expression of identity markers as well as similar viability of cells across the two iPS cell lines. These cryopreserved cell doses exhibit sustained viability, functionality, and quality for at least 2 years. Our results provide proof of concept that cryopreserved NES cells present a viable alternative to transplanting freshly cultured cells in future cell therapies and exemplify a platform from which cell formulation can be optimized and facilitate the transition to clinical trials.
Copyright © 2024 Winn, Uhlin, Kele, Eidhof and Falk.

  • Homo sapiens (Human)
  • Neuroscience
  • Pharmacology
  • Stem Cells and Developmental Biology

Parkinson's disease (PD) is a ubiquitous brain cell degeneration disease and presents a significant therapeutic challenge. By injecting 6-hydroxydopamine (6-OHDA) into the left medial forebrain bundle, rats were made to exhibit PD-like symptoms and treated by intranasal administration of a low-dose (2 × 105) or high-dose (1 × 106) human neural stem cells (hNSCs). Apomorphine-induced rotation test, stepping test, and open field test were implemented to evaluate the motor behavior and high-performance liquid chromatography was carried out to detect dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin, and 5-hydroxyindole-3-acetic acid in the striatum of rats. Animals injected with 6-OHDA showed significant motor function deficits and damaged dopaminergic system compared to the control group, which can be restored by hNSCs treatment. Treatment with hNSCs significantly increased the tyrosine hydroxylase-immunoreactive cell count in the substantia nigra of PD animals. Moreover, the levels of neurotransmitters exhibited a significant decline in the striatum tissue of animals injected with 6-OHDA when compared to that of the control group. However, transplantation of hNSCs significantly elevated the concentration of DA and DOPAC in the injured side of the striatum. Our study offered experimental evidence to support prospects of hNSCs for clinical application as a cell-based therapy for PD.
© 2024 the author(s), published by De Gruyter.

  • Neuroscience
  • Stem Cells and Developmental Biology

Post-traumatic syringomyelia (PTS) affects patients with chronic spinal cord injury (SCI) and is characterized by progressive deterioration of neurological symptoms. To improve surgical treatment, we studied the therapeutic effects of neuroepithelial-like stem cells (NESCs) derived from induced pluripotent stem cells (iPSCs) in a rat model of PTS. To facilitate clinical translation, we studied NESCs derived from Good Manufacturing Practice (GMP)-compliant iPSCs.
Human GMP-compliant iPSCs were used to derive NESCs. Cryo-preserved NESCs were used off-the-shelf for intraspinal implantation to PTS rats 1 or 10 weeks post-injury, and rats were sacrificed 10 weeks later. In vivo cyst volumes were measured with micro-MRI. Phenotypes of differentiated NESCs and host responses were analyzed by immunohistochemistry.
Off-the-shelf NESCs transplanted to PTS rats 10 weeks post-injury reduced cyst volume. The grafted NESCs differentiated mainly into glial cells. Importantly, NESCs also stimulated tissue repair. They reduced the density of glial scars and neurite-inhibiting chondroitin sulfate proteoglycan 4 (CSPG4), stimulated host oligodendrocyte precursor cells to migrate and proliferate, reduced active microglia/macrophages, and promoted axonal regrowth after subacute as well as chronic transplantation.
Significant neural repair promoted by NESCs demonstrated that human NESCs could be used as a complement to standard surgery in PTS. We envisage that future PTS patients transplanted with NESCs will benefit both from eliminating the symptoms of PTS, as well as a long-term improvement of the neurological symptoms of SCI.
This work was supported by Vinnova (2016-04134), Karolinska Institutet StratRegen, and the Chinese Scholarship Council.
Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.

  • Homo sapiens (Human)
  • Stem Cells and Developmental Biology

The study of molecular mechanism driving osteoarticular diseases like osteoarthritis or osteoporosis is impaired by the low accessibility to mesenchymal stem cells (MSC) from healthy donors (HD) for differential multi-omics analysis. Advances in cell reprogramming have, however, provided both a new source of human cells for laboratory research and a strategy to erase epigenetic marks involved in cell identity and the development of diseases. To unravel the pathological signatures on the MSC at the origin of cellular drifts during the formation of bone and cartilage, we previously developed iPSC from MSC of osteoarthritis donors. Here we present the derivation of three iPSCs from healthy age matched donors to model the disease and further identify (epi)genomic signatures of the pathology.
Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.

  • Stem Cells and Developmental Biology
View this product on CiteAb