Product Citations: 3

Genetically programmed alternative splicing of NEMO mediates an autoinflammatory disease phenotype.

In The Journal of Clinical Investigation on 15 March 2022 by Lee, Y., Wessel, A. W., et al.

Host defense and inflammation are regulated by the NF-κB essential modulator (NEMO), a scaffolding protein with a broad immune cell and tissue expression profile. Hypomorphic mutations in inhibitor of NF-κB kinase regulatory subunit gamma (IKBKG) encoding NEMO typically present with immunodeficiency. Here, we characterized a pediatric autoinflammatory syndrome in 3 unrelated male patients with distinct X-linked IKBKG germline mutations that led to overexpression of a NEMO protein isoform lacking the domain encoded by exon 5 (NEMO-Δex5). This isoform failed to associate with TANK binding kinase 1 (TBK1), and dermal fibroblasts from affected patients activated NF-κB in response to TNF but not TLR3 or RIG-I-like receptor (RLR) stimulation when isoform levels were high. By contrast, T cells, monocytes, and macrophages that expressed NEMO-Δex5 exhibited increased NF-κB activation and IFN production, and blood cells from these patients expressed a strong IFN and NF-κB transcriptional signature. Immune cells and TNF-stimulated dermal fibroblasts upregulated the inducible IKK protein (IKKi) that was stabilized by NEMO-Δex5, promoting type I IFN induction and antiviral responses. These data revealed how IKBKG mutations that lead to alternative splicing of skipping exon 5 cause a clinical phenotype we have named NEMO deleted exon 5 autoinflammatory syndrome (NDAS), distinct from the immune deficiency syndrome resulting from loss-of-function IKBKG mutations.

  • FC/FACS
  • Homo sapiens (Human)

Evaluation of Innate Immune Gene Expression Following HDAC Inhibitor Treatment by High Throughput qPCR and PhosFlow Cytometry.

In Methods in Molecular Biology (Clifton, N.J.) on 21 October 2016 by Olagnier, D., Chiang, C., et al.

The dynamics of chromatin structure contribute to the regulation of gene transcription and in part, the changes in chromatin structure associated with gene activation/repression are a function of the state of histone acetylation. Histone deacetylases (HDACs) deacetylate histone tails leading to a more compact structure of chromatin that in turn represses gene transcription. Given the rapid activation and/or repression of gene networks following microbial infection, the role of HDACs in the epigenetic regulation of genes involved in the innate and adaptive immune responses has become an area of extensive research. In relation to the immune-modulatory properties of HDAC inhibitors, we provide in the following methodological article an extended description of two techniques-a high throughput qPCR assay combined with PhosFlow cytometry-to evaluate the modulation of antiviral and inflammatory signaling cascades following HDAC inhibitor treatment. The high-throughput qPCR assay is based on the nanofluidic Fluidigm BioMark system that permits the analysis of up to 9216 qPCR reactions at once in a self-design open array chip. Together with the more refined analysis provided with the Phosflow technique, these two strategies offer invaluable tools to measure modulation of innate immune gene networks.

  • FC/FACS
  • Biochemistry and Molecular biology
  • Immunology and Microbiology

MicroRNA-146a regulates ICOS-ICOSL signalling to limit accumulation of T follicular helper cells and germinal centres.

In Nature Communications on 6 March 2015 by Pratama, A., Srivastava, M., et al.

Tight control of T follicular helper (Tfh) cells is required for optimal maturation of the germinal centre (GC) response. The molecular mechanisms controlling Tfh-cell differentiation remain incompletely understood. Here we show that microRNA-146a (miR-146a) is highly expressed in Tfh cells and peak miR-146a expression marks the decline of the Tfh response after immunization. Loss of miR-146a causes cell-intrinsic accumulation of Tfh and GC B cells. MiR-146a represses several Tfh-cell-expressed messenger RNAs, and of these, ICOS is the most strongly cell autonomously upregulated target in miR-146a-deficient T cells. In addition, miR-146a deficiency leads to increased ICOSL expression on GC B cells and antigen-presenting cells. Partial blockade of ICOS signalling, either by injections of low dose of ICOSL blocking antibody or by halving the gene dose of Icos in miR-146a-deficient T cells, prevents the Tfh and GC B-cell accumulation. Collectively, miR-146a emerges as a post-transcriptional brake to limit Tfh cells and GC responses.

  • FC/FACS
  • Mus musculus (House mouse)
View this product on CiteAb