Product Citations: 24

Protocol to construct humanized mice with adult CD34+ hematopoietic stem and progenitor cells.

In STAR Protocols on 20 September 2024 by Yu, C. I., Maser, R., et al.

Humanized mice, defined as mice with human immune systems, have become an emerging model to study human hematopoiesis, infectious disease, and cancer. Here, we describe the techniques to generate humanized NSGF6 mice using adult human CD34+ hematopoietic stem and progenitor cells (HSPCs). We describe steps for constructing and monitoring the engraftment of humanized mice. We then detail procedures for tissue processing and immunophenotyping by flow cytometry to evaluate the multilineage hematopoietic differentiation. For complete details on the use and execution of this protocol, please refer to Yu et al.1.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

Manipulation of immune cell functions, independently of direct infection of these cells, emerges as a key process in viral pathophysiology. Chronic infection by Human T-cell Leukemia Virus type 1 (HTLV-1) is associated with immune dysfunctions, including misdirected responses of dendritic cells (DCs). Here, we interrogate the ability of transformed HTLV-1-infected T cells to manipulate human DC functions. We show that exposure to transformed HTLV-1-infected T cells induces a biased and peculiar transcriptional signature in monocyte-derived DCs, associated with an inefficient maturation and a poor responsiveness to subsequent stimulation by a TLR4 agonist. This poor responsiveness is also associated with a unique transcriptional landscape characterized by a set of genes whose expression is either conferred, impaired or abolished by HTLV-1 pre-exposure. Induction of this functional impairment requires several hours of coculture with transformed HTLV-1-infected cells, and associated mechanisms driven by viral capture, cell-cell contacts, and soluble mediators. Altogether, this cross-talk between infected T cells and DCs illustrate how HTLV-1 might co-opt communications between cells to induce a unique local tolerogenic immune microenvironment suitable for its own persistence.
Copyright: © 2024 Carcone et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

  • Biochemistry and Molecular biology
  • Immunology and Microbiology

Induction of tolerogenicity following a molecular dialogue between HTLV-1-infected T cells and dendritic cells

Preprint on Research Square on 27 May 2024 by Dutartre, H., Carcone, A., et al.

Abstract Manipulation of immune cell functions, independently of direct infection of these cells, emerges as a key process in viral pathophysiology. Chronic infection by Human T-cell Leukemia Virus type 1 (HTLV-1) is associated with immune dysfunctions, including misdirected responses of dendritic cells (DCs). Here, we interrogate the ability of HTLV-1-infected T cells to indirectly manipulate human DC functions. We show that upon coculture with chronically infected T cells, monocyte-derived DCs (MDDCs) fail to fully mature. We further show that exposure to HTLV-1-infected T cells induces a unique transcriptional signature in MDDCs, which differs from a typical maturation program, and which is correlated with a dampened ability of HTLV-1-exposed MDDCs to subsequently respond to restimulation. Induction of this tolerogenic behavior is not strictly dependent on capture of HTLV-1 viral particles by MDDCs, nor on cell-cell contacts between HTLV-1-infected T cells and MDDCs, but is instead the result of a molecular dialogue between HTLV-1-infected T cells and MDDCs upon coculture, illustrating how HTLV-1 might indirectly induce a local tolerogenic immune microenvironment suitable for its own persistence.

  • Homo sapiens (Human)
  • Immunology and Microbiology

Peculiar transcriptional reprogramming with functional impairment of dendritic cells upon exposure to transformed HTLV-1-infected cells

Preprint on BioRxiv : the Preprint Server for Biology on 21 May 2024 by Carcone, A., Mortreux, F., et al.

Manipulation of immune cell functions, independently of direct infection of these cells, emerges as a key process in viral pathophysiology. Chronic infection by Human T-cell Leukemia Virus type 1 (HTLV-1) is associated with immune dysfunctions, including misdirected responses of dendritic cells (DCs). Here, we interrogate the ability of transformed HTLV-1-infected T cells to manipulate human DC functions. We show that exposure to transformed HTLV-1-infected T cells induces a biased and peculiar transcriptional signature in monocyte-derived DCs, associated with an inefficient maturation and a poor responsiveness to subsequent stimulation by a TLR4 agonist. This poor responsiveness is also associated with a unique transcriptional landscape characterized by a set of genes whose expression is either conferred, impaired or abolished by HTLV-1 pre-exposure. Induction of this functional impairment requires several hours of coculture with transformed HTLV-1-infected cells, and associated mechanisms driven by viral capture, cell-cell contacts, and soluble mediators. Altogether, this cross-talk between infected T cells and DCs illustrate how HTLV-1 might co-opt communications between cells to induce a unique local tolerogenic immune microenvironment suitable for its own persistence. Significance Chronic viral infection is associated with an escape from immune surveillance. This may rely on the induction of inappropriate DC responses, which can contribute to immunopathology. Immune dysfunctions have been repeatedly reported in people living with Human T-cell Leukemia Virus type 1 (HTLV-1), years before fatal clinical symptom onset, including misdirected responses of dendritic cells (DCs). Here, we report that HTLV-1-infected T cells actively manipulate neighboring, uninfected MDDC functions by rewiring their transcriptional response, leading to a biased, pro-tolerogenic responsiveness in MDDCs, induced by the bidirectional release of soluble mediators, in cooperation with mechanisms dependent on cell-cell contacts. This cross-talk illustrate how HTLV-1 might co-opt communications between cells to induce a local tolerogenic immune microenvironment suitable for its own persistence

  • Homo sapiens (Human)
  • Biochemistry and Molecular biology
  • Immunology and Microbiology

Pre-clinical use of humanized mice transplanted with CD34+ hematopoietic stem and progenitor cells (HSPCs) is limited by insufficient engraftment with adult non-mobilized HSPCs. Here, we developed a novel immunodeficient mice based on NOD-SCID-Il2γc-/- (NSG) mice to support long-term engraftment with human adult HSPCs. As both Flt3L and IL-6 are critical for many aspects of hematopoiesis, we knock-out mouse Flt3 and knock-in human IL6 gene. The resulting mice showed an increase in the availability of mouse Flt3L to human cells and a dose-dependent production of human IL-6 upon activation. Upon transplantation with low number of human HSPCs from adult bone marrow, these humanized mice demonstrated a significantly higher engraftment with multilineage differentiation of human lymphoid and myeloid cells, and tissue colonization at one year after adult HSPC transplant. Thus, these mice enable studies of human hematopoiesis and tissue colonization over time and may facilitate building autologous models for immuno-oncology studies.
© 2024 The Author(s).

View this product on CiteAb