Product Citations: 26

Resident memory T cell development is gradual and shows AP-1 gene expression in mature cells.

In JCI Insight on 23 June 2025 by Smith, N. P., Yan, Y., et al.

Tissue-resident memory T (TRM) cells play a central role in immune responses across all barrier tissues after infection. However, the mechanisms that drive TRM differentiation and priming for their recall effector function remains unclear. In this study, we leveraged newly generated and publicly available single-cell RNA-seq data generated across 10 developmental time points to define features of CD8+ TRM across both skin and small-intestine intraepithelial lymphocytes (siIEL). We employed linear modeling to capture gene programs that increase their expression levels in T cells transitioning from an effector to a memory state. In addition to capturing tissue-specific gene programs, we defined a temporal TRM signature across skin and siIEL that can distinguish TRM from circulating T cell populations. This TRM signature highlights biology that is missed in published signatures that compared bulk TRM to naive or nontissue resident memory populations. This temporal TRM signature included the AP-1 transcription factor family members Fos, Fosb, Fosl2, and Junb. ATAC-seq analysis detected AP-1-specific motifs at open chromatin sites in mature TRM. Cyclic immunofluorescence (CyCIF) tissue imaging detected nuclear colocalization of AP-1 members in resting CD8+ TRM greater than 100 days after infection. Taken together, these results reveal a critical role of AP-1 transcription factor members in TRM biology.

  • Immunology and Microbiology

Lactylated Apolipoprotein C-II Induces Immunotherapy Resistance by Promoting Extracellular Lipolysis.

In Advanced Science (Weinheim, Baden-Wurttemberg, Germany) on 1 October 2024 by Chen, J., Zhao, D., et al.

Mortality rates due to lung cancer are high worldwide. Although PD-1 and PD-L1 immune checkpoint inhibitors boost the survival of patients with non-small-cell lung cancer (NSCLC), resistance often arises. The Warburg Effect, which causes lactate build-up and potential lysine-lactylation (Kla), links immune dysfunction to tumor metabolism. The role of non-histone Kla in tumor immune microenvironment and immunotherapy remains to be clarified. Here, global lactylome profiling and metabolomic analyses of samples from patients with NSCLC is conducted. By combining multi-omics analysis with in vitro and in vivo validation, that intracellular lactate promotes extracellular lipolysis through lactyl-APOC2 is revealed. Mechanistically, lactate enhances APOC2 lactylation at K70, stabilizing it and resulting in FFA release, regulatory T cell accumulation, immunotherapy resistance, and metastasis. Moreover, the anti-APOC2K70-lac antibody that sensitized anti-PD-1 therapy in vivo is developed. This findings highlight the potential of anti lactyl-APOC2-K70 approach as a new combination therapy for sensitizing immunotherapeutic responses.
© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.

  • Immunology and Microbiology

LRP11 promotes stem-like T cells via MAPK13-mediated TCF1 phosphorylation, enhancing anti-PD1 immunotherapy.

In Journal for Immunotherapy of Cancer on 25 January 2024 by Sun, L., Ma, Z., et al.

Tumor-infiltrating T cells enter an exhausted or dysfunctional state, which limits antitumor immunity. Among exhausted T cells, a subset of cells with features of progenitor or stem-like cells has been identified as TCF1+ CD8+ T cells that respond to immunotherapy. In contrast to the finding that TCF1 controls epigenetic and transcriptional reprogramming in tumor-infiltrating stem-like T cells, little is known about the regulation of TCF1. Emerging data show that elevated body mass index is associated with outcomes of immunotherapy. However, the mechanism has not been clarified.
We investigated the proliferation of splenic lymphocytes or CD8+ T cells induced by CD3/CD28 stimulation in vitro. We evaluated the effects of low-density lipoprotein (LDL) and LRP11 inhibitors, as well as MAPK13 inhibitors. Additionally, we used shRNA technology to validate the roles of LRP11 and MAPK13. In an in vivo setting, we employed male C57BL/6J injected with B16 cells or MC38 cells to build a tumor model to assess the effects of LDL and LRP11 inhibitors, LRP11 activators, MAPK13 inhibitors on tumor growth. Flow cytometry was used to measure cell proportions and activation status. Molecular interactions and TCF1 status were examined using Western blotting. Moreover, we employed RNA sequencing to investigate the effects of LDL stimulation and MAPK13 inhibition in CD8+ T cells.
By using a tumor-bearing mouse model, we found that LDL-induced tumor-infiltrating TCF1+PD1+CD8+ T cells. Using a cell-based chimeric receptor screening system, we showed that LRP11 interacted with LDL and activated TCF1. LRP11 activation enhanced TCF1+PD1+CD8+ T-cell-mediated antitumor immunity, consistent with LRP11 blocking impaired T-cell function. Mechanistically, LRP11 activation induces MAPK13 activation. Then, MAPK13 phosphorylates TCF1, leading to increase of stem-like T cells.
LRP11-MAPK13-TCF1 enhanced antitumor immunity and induced tumor-infiltrating stem-like T cells.
© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Resident memory T cell development is associated with AP-1 transcription factor upregulation across anatomical niches

Preprint on BioRxiv : the Preprint Server for Biology on 2 October 2023 by Smith, N. P., Yan, Y., et al.

Tissue-resident memory T (T RM ) cells play a central role in immune responses to pathogens across all barrier tissues after infection. However, the underlying mechanisms that drive T RM differentiation and priming for their recall effector function remains unclear. In this study, we leveraged both newly generated and publicly available single-cell RNA-sequencing (scRNAseq) data generated across 10 developmental time points to define features of CD8 T RM across both skin and small-intestine intraepithelial lymphocytes (siIEL). We employed linear modeling to capture temporally-associated gene programs that increase their expression levels in T cell subsets transitioning from an effector to a memory T cell state. In addition to capturing tissue-specific gene programs, we defined a consensus T RM signature of 60 genes across skin and siIEL that can effectively distinguish T RM from circulating T cell populations, providing a more specific T RM signature than what was previously generated by comparing bulk T RM to naïve or non-tissue resident memory populations. This updated T RM signature included the AP-1 transcription factor family members Fos, Fosb and Fosl2 . Moreover, ATACseq analysis detected an enrichment of AP-1-specific motifs at open chromatin sites in mature T RM . CyCIF tissue imaging detected nuclear co-localization of AP-1 members Fosb and Junb in resting CD8 T RM >100 days post-infection. Taken together, these results reveal a critical role of AP-1 transcription factor members in T RM biology and suggests a novel mechanism for rapid reactivation of resting T RM in tissue upon antigen encounter.

  • Biochemistry and Molecular biology
  • Immunology and Microbiology
  • Neuroscience

T cell kinetics reveal expansion of distinct lung T cell subsets in acute versus in resolved influenza virus infection.

In Frontiers in Immunology on 25 October 2022 by Eriksson, M., Nylén, S., et al.

Influenza virus infection is restricted to airway-associated tissues and elicits both cellular and humoral responses ultimately resulting in generation of memory cells able to initiate a rapid immune response against re-infections. Resident memory T cells confer protection at the site of infection where lung-resident memory T cells are important for protecting the host against homologous and heterologous influenza virus infections. Mapping kinetics of local and systemic T cell memory formation is needed to better understand the role different T cells have in viral control and protection. After infecting BALB/c mice with influenza virus strain A/Puerto Rico/8/1934 H1N1 the main proportion of activated T cells and B cells expressing the early activation marker CD69 was detected in lungs and lung-draining mediastinal lymph nodes. Increased frequencies of activated cells were also observed in the peripheral lymphoid organs spleen, inguinal lymph nodes and mesenteric lymph nodes. Likewise, antigen-specific T cells were most abundant in lungs and mediastinal lymph nodes but present in all organs studied. CD8+CD103-CD49a+ lung-resident T cells expanded simultaneously with timing of viral clearance whereas CD8+CD103+CD49a+ lung-resident T cells was the most abundant subset after resolution of infection and antigen-specific, lung-resident T cells were detected up to seven months after infection. In conclusion, the results in this detailed kinetic study demonstrate that influenza virus infection elicits adaptive immune responses mainly in respiratory tract-associated tissues and that distinct subsets of lung-resident T cells expand at different time points during infection. These findings contribute to the understanding of the adaptive immune response locally and systemically following influenza virus infection and call for further studies on the roles of the lung-resident T cell subsets.
Copyright © 2022 Eriksson, Nylén and Grönvik.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb