Product Citations: 18

Mebendazole (MBZ), a benzimidazole anthelmintic and cytoskeleton-disrupting compound, exhibits antitumor properties; however, its action on ovarian cancer (OC) is not clearly understood. This study evaluates the effect of MBZ on OC cell lines OVCAR3 and OAW42, focusing on cell proliferation, migration, invasion, and cancer stemness. The underlying mechanisms, including cytoskeletal disruption, epithelial-mesenchymal transition (EMT), and signaling pathways, were explored. MBZ inhibited OVCAR3 and OAW42 cell proliferation in a dose- and time-dependent manner. Additionally, MBZ significantly impedes migration, spheroid invasion, colony formation, and stemness. In addition, it reduced actin polymerization and down-regulated CSC markers (e.g., CD24, CD44, EpCAM). Moreover, MBZ suppressed MMP-9 activity and inhibited the EMT marker as judged by decreased N-Cadherin and Vimentin and increased E-Cadherin. Furthermore, MBZ induced G2/M cell cycle arrest by modulating Cyclin B1, CDC25C, and WEE1. Also, it triggered apoptosis by disrupting mitochondrial membrane potential. Mechanistic studies revealed a significant downregulation of Girdin, an Akt modulator, along with reduced p-Akt, p-IKKα/β, and p-NF-κB, indicating MBZ's novel mechanism of action through the Girdin-mediated Akt/IKKα/β/NF-κB signaling axis. Thus, by targeting Girdin, MBZ presents a promising repurposed therapeutic strategy to inhibit cancer cell proliferation and metastasis in ovarian cancer.

  • Homo sapiens (Human)
  • Cancer Research
  • Cell Biology

IL-7 promotes CD19-directed CAR-T cells proliferation through miRNA-98-5p by targeting CDKN1A.

In International Immunopharmacology on 1 November 2023 by Yang, L. R., Li, L., et al.

CAR-T targeting CD19 have achieved significant effects in the treatment of B-line leukemia and lymphoma. However, the treated patients frequently relapsed and could not achieve complete remission. Therefore, improving the proliferation and cytotoxicity of CAR-T cells, reducing exhaustion and enhancing infiltration capacity are still issues to be solved. The IL-7 has been shown to enhance the memory characteristics of CAR-T cells, but the specific mechanism has yet to be elaborated. miRNAs play an important role in T cell activity. However, whether miRNA is involved in the activation of CAR-T cells by IL-7 has not yet been reported. Our previous study had established the 3rd generation CAR-T cells. The present study further found that IL-7 significantly increased the proliferation of anti-CD19 CAR-T cells, the ratio of CD4 + CAR + cells and the S phase of cell cycle. In vivo study NAMALWA xenograft model showed that IL-7-stimulated CAR-T cells possessed stronger tumoricidal efficiency. Further we validated that IL-7 induced CAR-T cells had low expression of CDKN1A and high expression of miRNA-98-5p. Additionally, CDKN1A was associated with miRNA-98-5p. Our results, for the first time, suggested IL-7 could conspicuously enhance the proliferation of CAR-T cells through miRNA-98-5p targeting CDKN1A expression, which should be applied to CAR-T production.
Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.

  • FC/FACS
  • Genetics
  • Immunology and Microbiology

Immunocompromised individuals are particularly vulnerable to viral infections and reactivation, especially endogenous herpes viruses such as Epstein-Barr virus (EBV), a member of oncogenic gamma-herpesviruses, which are commonly linked to pneumonia and consequently significant morbidity and mortality. In the study of human and animal oncogenic gammaherpesviruses, the murine gamma-herpesviruses-68 (MHV-68) model has been applied, as it can induce pneumonia in immunocompromised mice. Mesenchymal stem cell (MSC) treatment has demonstrated therapeutic potential for pneumonia, as well as other forms of acute lung injury, in preclinical models. In this study, we aim to investigate the therapeutic efficacy and underlying mechanisms of human bone marrow-derived MSC (hMSC) on MHV-68-induced pneumonia. We found that intravenous administration of hMSCs significantly reduced lung damages, diminished inflammatory mediators and somehow inhibited MHV-68 replication. Furthermore, hMSCs treatment can regulate innate immune response and induce macrophage polarization from M1 to M2 phenotype, could significantly alter leukocyte infiltration and reduce pulmonary fibrosis. Our findings with co-culture system indicated that hMSCs effectively reduced the secretion of of inflammation-related factors and induced a shift in macrophage polarization, consistent with in vivo results. Further investigations revealed that hMSCs treatment suppressed the activation of macrophage ROS/NLRP3 signaling pathway in vivo and in vitro. Moreover, administration of MCC950, a selective NLRP3 inhibitor has been shown to effectively reduce ROS production and subsequently alleviate inflammation induced by MHV-68. Taken together, our work has shown that hMSCs can effectively protect mice from lethal MHV-68 pneumonia, which may throw new light on strategy for combating human EBV-associated pneumonia.
© 2023. Sichuan International Medical Exchange & Promotion Association.

  • Immunology and Microbiology

IL-7 promotes CD19-directed CAR-T cells proliferation through miRNA-98-5p by targeting CDKN1A

Preprint on Research Square on 6 March 2023 by Hou, Z., Yang, L., et al.

CAR-T targeting CD19 have achieved significant effects in the treatment of B-line leukemia and lymphoma. However, the treated patients frequently relapsed and could not achieve complete remission. Therefore, improving the proliferation and cytotoxicity of CAR-T cells, reducing exhaustion and enhancing infiltration capacity are still issues to be solved. The IL-7 has been shown to enhance the memory characteristics of CAR-T cells, but the specific mechanism has yet to be elaborated. miRNAs play an important role in T cell activity. However, whether miRNA is involved in the activation of CAR-T cells by IL-7 has not yet been reported. Our previous study had established the 3rd generation CAR-T cells. The present study further found that IL-7 significantly increased the proliferation of anti-CD19 CAR-T cells, the ratio of CD4 + CAR + cells and the S phase of cell cycle. In vivo study showed that IL-7-stimulated CAR-T possessed stronger tumoricidal efficiency. Further we validated that IL-7 induced CAR-T cells had low expression of CDKN1A and high expression of miRNA-98-5p. Additionally, CDKN1A was associated with miRNA-98-5p. Our results, for the first time, suggested IL-7 could conspicuously enhance the proliferation of CAR-T cells through miRNA-98-5p targeting CDKN1A expression, which should be applied to CAR-T production.

  • FC/FACS
  • Genetics
  • Immunology and Microbiology

Epithelial-to-mesenchymal transition (EMT) is key to tumor aggressiveness, therapy resistance, and immune escape in breast cancer. Because metabolic traits might be involved along the EMT continuum, we investigated whether human breast epithelial cells engineered to stably acquire a mesenchymal phenotype in non-tumorigenic and H-RasV12-driven tumorigenic backgrounds possess unique metabolic fingerprints. We profiled mitochondrial-cytosolic bioenergetic and one-carbon (1C) metabolites by metabolomic analysis, and then questioned the utilization of different mitochondrial substrates by EMT mitochondria and their sensitivity to mitochondria-centered inhibitors. "Upper" and "lower" glycolysis were the preferred glucose fluxes activated by EMT in non-tumorigenic and tumorigenic backgrounds, respectively. EMT in non-tumorigenic and tumorigenic backgrounds could be distinguished by the differential contribution of the homocysteine-methionine 1C cycle to the transsulfuration pathway. Both non-tumorigenic and tumorigenic EMT-activated cells showed elevated mitochondrial utilization of glycolysis end-products such as lactic acid, β-oxidation substrates including palmitoyl-carnitine, and tricarboxylic acid pathway substrates such as succinic acid. Notably, mitochondria in tumorigenic EMT cells distinctively exhibited a significant alteration in the electron flow intensity from succinate to mitochondrial complex III as they were highly refractory to the inhibitory effects of antimycin A and myxothiazol. Our results show that the bioenergetic/1C metabolic signature, the utilization rates of preferred mitochondrial substrates, and sensitivity to mitochondrial drugs significantly differs upon execution of EMT in non-tumorigenic and tumorigenic backgrounds, which could help to resolve the relationship between EMT, malignancy, and therapeutic resistance in breast cancer.

  • FC/FACS
  • Cancer Research
  • Cell Biology
View this product on CiteAb