Product Citations: 26

2 images found

Mutations that negatively impact mitochondrial function are highly prevalent in humans and lead to disorders with a wide spectrum of disease phenotypes, including deficiencies in immune cell development and/or function. Previous analyses of mice with a hepatocyte-specific cytochrome c oxidase (COX) deficiency revealed an unexpected peripheral blood leukopenia associated with splenic and thymic atrophy. Here, we use mice with a hepatocyte-specific deletion of the COX assembly factor Sco1 to show that metabolic defects extrinsic to the hematopoietic compartment lead to a pan-lymphopenia represented by severe losses in both B and T cells. We further demonstrate that immune defects in these mice are associated with the loss of bone marrow lymphoid progenitors common to both lineages and early signs of autoantibody-mediated autoimmunity. Our findings collectively identify hepatocyte dysfunction as a potential instigator of immunodeficiency in patients with congenital mitochondrial defects who suffer from chronic or recurrent infections.
© 2025 The Author(s).

Myocardial infarction (MI) results in aberrant cardiac metabolism, but no therapeutics have been designed to target cardiac metabolism to enhance heart repair. We engineer a humanized monoclonal antibody against the ectonucleotidase ENPP1 (hENPP1mAb) that targets metabolic crosstalk in the infarcted heart. In mice expressing human ENPP1, systemic administration of hENPP1mAb metabolically reprograms myocytes and non-myocytes and leads to a significant rescue of post-MI heart dysfunction. Using metabolomics, single-nuclear transcriptomics, and cellular respiration studies, we show that the administration of the hENPP1mAb induces organ-wide metabolic and transcriptional reprogramming of the heart that enhances myocyte cellular respiration and decreases cell death and fibrosis in the infarcted heart. Biodistribution and safety studies showed specific organ-wide distribution with the antibody being well tolerated. In humanized animals, with drug clearance kinetics similar to humans, we demonstrate that a single "shot" of the hENPP1mAb after MI is sufficient to rescue cardiac dysfunction.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Cardiovascular biology
  • Cell Biology

BRD9 determines the cell fate of hematopoietic stem cells by regulating chromatin state.

In Nature Communications on 15 December 2023 by Xiao, M., Kondo, S., et al.

ATP-dependent chromatin remodeling SWI/SNF complexes exist in three subcomplexes: canonical BAF (cBAF), polybromo BAF (PBAF), and a newly described non-canonical BAF (ncBAF). While cBAF and PBAF regulate fates of multiple cell types, roles for ncBAF in hematopoietic stem cells (HSCs) have not been investigated. Motivated by recent discovery of disrupted expression of BRD9, an essential component of ncBAF, in multiple cancers, including clonal hematopoietic disorders, we evaluate here the role of BRD9 in normal and malignant HSCs. BRD9 loss enhances chromatin accessibility, promoting myeloid lineage skewing while impairing B cell development. BRD9 significantly colocalizes with CTCF, whose chromatin recruitment is augmented by BRD9 loss, leading to altered chromatin state and expression of myeloid-related genes within intact topologically associating domains. These data uncover ncBAF as critical for cell fate specification in HSCs via three-dimensional regulation of gene expression and illuminate roles for ncBAF in normal and malignant hematopoiesis.
© 2023. The Author(s).

  • Mus musculus (House mouse)
  • Stem Cells and Developmental Biology

Hematopoietic stem and progenitor cells confer cross-protective trained immunity in mouse models.

In IScience on 15 September 2023 by Kain, B. N., Tran, B. T., et al.

Recent studies suggest that infection reprograms hematopoietic stem and progenitor cells (HSPCs) to enhance innate immune responses upon secondary infectious challenge, a process called "trained immunity." However, the specificity and cell types responsible for this response remain poorly defined. We established a model of trained immunity in mice in response to Mycobacterium avium infection. scRNA-seq analysis revealed that HSPCs activate interferon gamma-response genes heterogeneously upon primary challenge, while rare cell populations expand. Macrophages derived from trained HSPCs demonstrated enhanced bacterial killing and metabolism, and a single dose of recombinant interferon gamma exposure was sufficient to induce similar training. Mice transplanted with influenza-trained HSPCs displayed enhanced immunity against M. avium challenge and vice versa, demonstrating cross protection against antigenically distinct pathogens. Together, these results indicate that heterogeneous responses to infection by HSPCs can lead to long-term production of bone marrow derived macrophages with enhanced function and confer cross-protection against alternative pathogens.
© 2023 The Authors.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Alveolar macrophages instruct CD8+ T cell expansion by antigen cross-presentation in lung.

In Cell Reports on 13 December 2022 by Kawasaki, T., Ikegawa, M., et al.

Lung CD8+ memory T cells play central roles in protective immunity to respiratory viruses, such as influenza A virus (IAV). Here, we find that alveolar macrophages (AMs) function as antigen-presenting cells that support the expansion of lung CD8+ memory T cells. Intranasal antigen administration to mice subcutaneously immunized with antigen results in a rapid expansion of antigen-specific CD8+ T cells in the lung, which is dependent on antigen cross-presentation by AMs. AMs highly express interleukin-18 (IL-18), which mediates subsequent formation of CD103+CD8+ resident memory T (TRM) cells in the lung. In a mouse model of IAV infection, AMs are required for expansion of virus-specific CD8+ T cells and CD103+CD8+ TRM cells and inhibiting virus replication in the lungs during secondary infection. These results suggest that AMs instruct a rapid expansion of antigen-specific CD8+ T cells in lung, which protect the host from respiratory virus infection.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb