Product Citations: 4

TGF-β2 interfering oligonucleotides used as adjuvants for microbial vaccines.

In Journal of Leukocyte Biology on 1 November 2020 by Tu, L., Sun, X., et al.

The success of using immune checkpoint inhibitors to treat cancers implies that inhibiting an immunosuppressive cytokine, such as TGF-β2, could be a strategy to develop novel adjuvants for microbial vaccines. To develop nucleic acid based TGF-β2 inhibitors, we designed three antisense oligonucleotides, designated as TIO1, TIO2, and TIO3, targeting the conserve regions identical in human and mouse TGF-β2 mRNA 3'-untranslated region. In cultured immune cells, TIO3 and TIO1 significantly reduced the TGF-β2 mRNA expression and protein production. In mice, the TIO3 and TIO1, when formulated in various microbial vaccines, significantly enhanced the antibody response to the vaccines, and the TIO3-adjuvanted influenza virus vaccine induced effective protection against the influenza virus challenge. In the immunized mice, TIO3 formulated in microbial vaccines dramatically reduced surface-bound TGF-β2 expression on CD4+ T cells and CD19+ B cells in the lymph node (LN) cells and spleen cells; up-regulated the expression of CD40, CD80, CD86, and MHC II molecules on CD19+ B cells and CD11c+ dendritic cells; and promoted IFN-γ production in CD4+ T cells and CD8+ T cells in the LN cells. Overall, TIO3 or TIO1 could be used as a novel type of adjuvant for facilitating the microbial vaccines to elicit more vigorous and persistent antibody response by interfering with TGF-β2 expression.
©2020 Society for Leukocyte Biology.

  • Immunology and Microbiology

Tumor-intrinsic response to IFNγ shapes the tumor microenvironment and anti-PD-1 response in NSCLC.

In Life Science Alliance on 1 June 2019 by Bullock, B. L., Kimball, A. K., et al.

Targeting PD-1/PD-L1 is only effective in ∼20% of lung cancer patients, but determinants of this response are poorly defined. We previously observed differential responses of two murine K-Ras-mutant lung cancer cell lines to anti-PD-1 therapy: CMT167 tumors were eliminated, whereas Lewis Lung Carcinoma (LLC) tumors were resistant. The goal of this study was to define mechanism(s) mediating this difference. RNA sequencing analysis of cancer cells recovered from lung tumors revealed that CMT167 cells induced an IFNγ signature that was blunted in LLC cells. Silencing Ifngr1 in CMT167 resulted in tumors resistant to IFNγ and anti-PD-1 therapy. Conversely, LLC cells had high basal expression of SOCS1, an inhibitor of IFNγ. Silencing Socs1 increased response to IFNγ in vitro and sensitized tumors to anti-PD-1. This was associated with a reshaped tumor microenvironment, characterized by enhanced T cell infiltration and enrichment of PD-L1hi myeloid cells. These studies demonstrate that targeted enhancement of tumor-intrinsic IFNγ signaling can induce a cascade of changes associated with increased therapeutic vulnerability.
© 2019 Bullock et al.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research

MG132 is a pivotal inhibitor of the ubiquitin-proteasome system (UPS), and rapamycin (RAPA) is an important inducer of autophagy. MG132 and RAPA have been shown to be effective agents that can cure multiple autoimmune diseases by reducing inflammation. Although individual MG132 and RAPA showed protective effects for atherosclerosis (AS), the combined effect of these two drugs and its molecular mechanism are still unclear. In this article we investigate the regulation of oxidative modification of low-density lipoprotein (ox-LDL) stress and foam cell formation in the presence of both proteasome inhibitor MG132 and the autophagy inducer RAPA to uncover the molecular mechanism underlying this process. We established the foam cells model by ox-LDL and an animal model. Then, we tested six experimental groups of MG132, RAPA, and 3MA drugs. As a result, RAPA-induced autophagy reduces accumulation of polyubiquitinated proteins and apoptosis of foam cells. The combination of MG132 with RAPA not only suppressed expression of the inflammatory cytokines and formation of macrophage foam cells, but also significantly affected the NF-κB signaling pathway and the polarization of RAW 264.7 cells. These data suggest that the combination of proteasome inhibitor and autophagy inducer ameliorates the inflammatory response and reduces the formation of macrophage foam cells during development of AS. Our research provides a new way to suppress vascular inflammation and stabilize plaques of late atherosclerosis.

  • Mus musculus (House mouse)
  • Cell Biology
  • Immunology and Microbiology

Human C-reactive protein (CRP) is a serum-soluble pattern recognition receptor that serves as a marker of inflammation and directly contributes to innate immunity. In this study, we show that human CRP also directly contributes to adaptive immunity, that is, native CRP binds specifically to human Jurkat T cells and to mouse naive CD4(+) T cells and modulates their Th1 and Th2 responses. In vitro both exogenously added (purified) and endogenously expressed (via transfection) human CRP inhibited Th1 differentiation and augmented Th2 differentiation of naive CD4(+) T cells. In vivo for human CRP transgenic compared with wild-type mice, a lesser proportion of the T cells recovered from the spleens of healthy animals were Th1 cells. Moreover, in both CRP transgenic mice and in wild-type mice treated with human CRP, during myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalomyelitis both the Th1 cell response and disease severity were inhibited. These pattern recognition-independent actions of CRP directly on T cells highlights the potential for this soluble pattern recognition receptor to act as a tonic regulator of immunity, shaping global adaptive immune responses during both homeostasis and disease.
Copyright © 2015 by The American Association of Immunologists, Inc.

  • Immunology and Microbiology
View this product on CiteAb