Product Citations: 79

2 images found

Interleukin-6 (IL-6) plays a central role in sepsis-induced cytokine storm involving immune hyperactivation and early neutrophil activation. Programmed death protein-1 (PD-1) is associated with sepsis-induced immunosuppression and lymphocyte apoptosis. However, the effects of simultaneous blockade of IL-6 and PD-1 in a murine sepsis model are not well understood.
In this study, sepsis was induced in male C57BL/6 mice through cecal ligation and puncture (CLP). IL-6 blockade, PD-1 blockade, or combination of both was administered 24 h after CLP. Peripheral blood count, cytokine level, lymphocyte apoptosis in the spleen, neutrophil infiltration in the lungs and liver, and survival rate were measured. The mortality rate of the IL-6/PD-1 group was lower, though not statistically significant (p = 0.164), than that of CLP mice (75.0% vs. 91.7%). The IL-6/PD-1 group had lower neutrophil percentage and platelet count compared with the CLP group; no significant difference was observed in other cytokine levels. The IL-6/PD-1 group also showed reduced T lymphocyte apoptosis in the spleen and decreased neutrophil infiltration in the liver and lungs.
IL-6/PD-1 dual blockade reduces neutrophil infiltration, lymphocyte apoptosis, and bacterial burden while preserving tissue integrity in sepsis. Although the improvement in survival was not statistically significant, these findings highlight its potential as a therapeutic approach in sepsis.
© 2025. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Reprogramming tryptophan metabolism (TRP) may be able to overcome immunosuppression and restore the immune checkpoint blockade (ICB) response in patients with epithelial ovarian cancer (EOC) resistant to ICB therapy because TRP metabolism is involved in the kynurenine/indole and serotonin pathways of tryptophan metabolism. Herein, employing amitriptyline (AMI), an antagonist of TLR4 and serotonin transporter (SERT), we revealed that AMI remodels the immunological landscape of EOC. In particular, AMI lowered the expression of IDO1, IL-4I1, and PD-L1, the quantity of KYN and indoles, and the level of immunosuppressive immune cells MDSC, Tregs, and CD8+CD39+/PD-1+ T cell. AMI boosted the killing potential of anti-PD-1-directed CD8+T cells and worked in concert with PD-1 inhibitors to suppress tumor growth and to prolong the survival of EOC-bearing mice. This work highlights AMI as an effective regulator of ICB response by manipulating EOC cell TRP metabolism, indicating it could be a potential strategy for improving EOC ICB therapy.
© 2024 The Author(s).

  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Cancer Research
  • Cell Biology

A global view of altered ligand-receptor interactions in bone marrow aging based on single-cell sequencing.

In Computational and Structural Biotechnology Journal on 1 December 2024 by Chen, W., Chen, X., et al.

Altered cell-cell communication is a hallmark of aging, but its impact on bone marrow aging remains poorly understood. Based on a common and effective pipeline and single-cell transcriptome sequencing, we detected 384,124 interactions including 2575 ligand-receptor pairs and 16 non-adherent bone marrow cell types in old and young mouse and identified a total of 5560 significantly different interactions, which were then verified by flow cytometry and quantitative real-time PCR. These differential ligand-receptor interactions exhibited enrichment for the senescence-associated secretory phenotypes. Further validation demonstrated supplementing specific extracellular ligands could modify the senescent signs of hematopoietic stem cells derived from old mouse. Our work provides an effective procedure to detect the ligand-receptor interactions based on single-cell sequencing, which contributes to understand mechanisms and provides a potential strategy for intervention of bone marrow aging.
© 2024 The Authors.

  • FC/FACS
  • Mus musculus (House mouse)

Single-cell RNA-seq reveals a resolving immune phenotype in the oral mucosa.

In IScience on 20 September 2024 by Cantalupo, P., Diacou, A., et al.

The oral mucosa is the interface between the host immune response and the oral microbiota. In periodontal disease, the microbial plaque elicits a tissue-destructive immune response. Removal of the microbial stimulus initiates active resolution of inflammatory. Here, we use single-cell RNA-sequencing (scRNA-seq) to characterize the immune response within the oral mucosa across three distinct conditions of periodontal health, disease, and resolution in mice. We report gene expression shifts across the three conditions are driven by macrophage and neutrophils and identify a unique gene signature that characterizes resolution of disease. Macrophage subgroups are identified that demonstrate differential expansion across conditions, including a subgroup that expands during resolution with an immunoregulatory gene signature and enriched for surface marker Cd74. We validate expansion of this subgroup during resolution via flow cytometry. This work presents a robust single-cell dataset of immunological changes in the oral mucosa and identifies a resolution-associated macrophage phenotype in mucosal immunity.
© 2024 The Author(s).

  • Mus musculus (House mouse)
  • Genetics
  • Immunology and Microbiology

Water is the most abundant substance in the human body and plays a pivotal role in various bodily functions. While underhydration is associated with the incidence of certain diseases, the specific role of water in gut function remains largely unexplored. Here, we show that water restriction disrupts gut homeostasis, which is accompanied by a bloom of gut microbes and decreased numbers of immune cells, especially Th17 cells, within the colon. These microbial and immunological changes in the gut are associated with an impaired ability to eliminate the enteric pathogen Citrobacter rodentium. Moreover, aquaporin 3, a water channel protein, is required for the maintenance of Th17 cell function and differentiation. Taken together, adequate water intake is critical for maintaining bacterial and immunological homeostasis in the gut, thereby enhancing host defenses against enteric pathogens.
© 2024 The Author(s).

  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb