Product Citations: 18

Iron plays a major role in the deterioration of β-thalassemia. Indeed, the high levels of transferrin saturation and iron delivered to erythroid progenitors are associated with production of α-globin precipitates that negatively affect erythropoiesis. Matriptase-2/TMPRSS6, a membrane-bound serine protease expressed in hepatocytes, negatively modulates hepcidin production and thus is a key target to prevent iron overload in β-thalassemia. To address safety concerns raised by the suppression of Tmprss6 by antisense oligonucleotides or small interfering RNA, we tested a fully human anti-matriptase-2 antibody, RLYB331, which blocks the protease activity of matriptase-2. When administered weekly to Hbbth3/+ mice, RLYB331 induced hepcidin expression, reduced iron loading, prevented the formation of toxic α-chain/heme aggregates, reduced ros oxygen species formation, and improved reticulocytosis and splenomegaly. To increase the effectiveness of RLYB331 in β-thalassemia treatment even further, we administered RLYB331 in combination with RAP-536L, a ligand-trapping protein that contains the extracellular domain of activin receptor type IIB and alleviates anemia by promoting differentiation of late-stage erythroid precursors. RAP-536L alone did not prevent iron overload but significantly reduced apoptosis in the erythroid populations of the bone marrow, normalized red blood cell counts, and improved hemoglobin and hematocrit levels. Interestingly, the association of RLYB331 with RAP-536L entirely reversed the β-thalassemia phenotype in Hbbth3/+ mice and simultaneously corrected iron overload, ineffective erythropoiesis, splenomegaly, and hematological parameters, suggesting that a multifunctional molecule consisting of the fusion of RLYB331 with luspatercept (human version of RAP-536L) would allow administration of a single medication addressing simultaneously the different pathophysiological aspects of β-thalassemia.
© 2024 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.

  • Mus musculus (House mouse)

DUSP8 induces TGF-β-stimulated IL-9 transcription and Th9-mediated allergic inflammation by promoting nuclear export of Pur-α.

In The Journal of Clinical Investigation on 1 November 2023 by Chuang, H. C., Hsueh, C. H., et al.

Dual-specificity phosphatase 8 (DUSP8) is a MAPK phosphatase that dephosphorylates and inactivates the kinase JNK. DUSP8 is highly expressed in T cells; however, the in vivo role of DUSP8 in T cells remains unclear. Using T cell-specific Dusp8 conditional KO (T-Dusp8 cKO) mice, mass spectrometry analysis, ChIP-Seq, and immune analysis, we found that DUSP8 interacted with Pur-α, stimulated interleukin-9 (IL-9) gene expression, and promoted Th9 differentiation. Mechanistically, DUSP8 dephosphorylated the transcriptional repressor Pur-α upon TGF-β signaling, leading to the nuclear export of Pur-α and subsequent IL-9 transcriptional activation. Furthermore, Il-9 mRNA levels were induced in Pur-α-deficient T cells. In addition, T-Dusp8-cKO mice displayed reduction of IL-9 and Th9-mediated immune responses in the allergic asthma model. Reduction of Il-9 mRNA levels in T cells and allergic responses of T-Dusp8-cKO mice was reversed by Pur-α knockout. Remarkably, DUSP8 protein levels and the DUSP8-Pur-α interaction were indeed increased in the cytoplasm of T cells from people with asthma and patients with atopic dermatitis. Collectively, DUSP8 induces TGF-β-stimulated IL-9 transcription and Th9-induced allergic responses by inhibiting the nuclear translocation of the transcriptional repressor Pur-α. DUSP8 may be a T-cell biomarker and therapeutic target for asthma and atopic dermatitis.

  • Biochemistry and Molecular biology
  • Immunology and Microbiology

Mast cells link immune sensing to antigen-avoidance behaviour.

In Nature on 1 August 2023 by Plum, T., Binzberger, R., et al.

The physiological functions of mast cells remain largely an enigma. In the context of barrier damage, mast cells are integrated in type 2 immunity and, together with immunoglobulin E (IgE), promote allergic diseases. Allergic symptoms may, however, facilitate expulsion of allergens, toxins and parasites and trigger future antigen avoidance1-3. Here, we show that antigen-specific avoidance behaviour in inbred mice4,5 is critically dependent on mast cells; hence, we identify the immunological sensor cell linking antigen recognition to avoidance behaviour. Avoidance prevented antigen-driven adaptive, innate and mucosal immune activation and inflammation in the stomach and small intestine. Avoidance was IgE dependent, promoted by Th2 cytokines in the immunization phase and by IgE in the execution phase. Mucosal mast cells lining the stomach and small intestine rapidly sensed antigen ingestion. We interrogated potential signalling routes between mast cells and the brain using mutant mice, pharmacological inhibition, neural activity recordings and vagotomy. Inhibition of leukotriene synthesis impaired avoidance, but overall no single pathway interruption completely abrogated avoidance, indicating complex regulation. Collectively, the stage for antigen avoidance is set when adaptive immunity equips mast cells with IgE as a telltale of past immune responses. On subsequent antigen ingestion, mast cells signal termination of antigen intake. Prevention of immunopathology-causing, continuous and futile responses against per se innocuous antigens or of repeated ingestion of toxins through mast-cell-mediated antigen-avoidance behaviour may be an important arm of immunity.
© 2023. The Author(s).

  • Mus musculus (House mouse)
  • Immunology and Microbiology
  • Neuroscience

A DNA/DMXAA/Metal-Organic Framework Activator of Innate Immunity for Boosting Anticancer Immunity.

In Advanced Materials (Deerfield Beach, Fla.) on 1 April 2023 by Chen, X., Tang, Q., et al.

Immunotherapy has achieved revolutionary success in clinics, but it remains challenging for treating hepatocellular carcinoma (HCC) characterized by high vascularization. Here, it is reported that metal-organic framework-801 (MOF-801) can be employed as a stimulator of interferon genes (STING) through Toll-like receptor 4 (TLR4) not just as a drug delivery carrier. Notably, cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) and 5, 6-dimethylxanthenone-4-acetic acid (DMXAA) STING agonist with vascular disrupting function coordinates with MOF-801 to self-assemble into a nanoparticle (MOF-CpG-DMXAA) that effectively delivers CpG ODNs and DMXAA to cells for synergistically improving the tumor microenvironment by reprogramming tumor-associated macrophages (TAMs), promoting dendritic cells (DCs) maturation, as well as destroying tumor blood vessels. In HCC-bearing mouse models, it is demonstrated that MOF-CpG-DMXAA triggers systemic immune activation and stimulates robust tumoricidal immunity, resulting in a superior immunotherapeutic efficiency in orthotopic and recurrent HCC.
© 2023 Wiley-VCH GmbH.

  • Genetics
  • Immunology and Microbiology

SOCS2 regulation of growth hormone signaling requires a canonical interaction with phosphotyrosine.

In Bioscience Reports on 22 December 2022 by Li, K., Meza Guzman, L. G., et al.

Suppressor of cytokine signaling (SOCS) 2 is the critical negative regulator of growth hormone (GH) and prolactin signaling. Mice lacking SOCS2 display gigantism with increased body weight and length, and an enhanced response to GH treatment. Here, we characterized mice carrying a germ-line R96C mutation within the SOCS2-SH2 domain, which disrupts the ability of SOCS2 to interact with tyrosine-phosphorylated targets. Socs2R96C/R96C mice displayed a similar increase in growth as previously observed in SOCS2 null (Socs2-/-) mice, with a proportional increase in body and organ weight, and bone length. Embryonic fibroblasts isolated from Socs2R96C/R96C and Socs2-/- mice also showed a comparable increase in phosphorylation of STAT5 following GH stimulation, indicating the critical role of phosphotyrosine binding in SOCS2 function.
© 2022 The Author(s).

  • Mus musculus (House mouse)
  • Endocrinology and Physiology
View this product on CiteAb