Product Citations: 9

The current paradigm indicates that naive T cells are primed in secondary lymphoid organs. Here, we present evidence that intranasal administration of peptide antigens appended to nanofibers primes naive CD8+ T cells in the lung independently and prior to priming in the draining mediastinal lymph node (MLN). Notably, comparable accumulation and transcriptomic responses of CD8+ T cells in lung and MLN are observed in both Batf3KO and wild-type (WT) mice, indicating that, while cDC1 dendritic cells (DCs) are the major subset for cross-presentation, cDC2 DCs alone are capable of cross-priming CD8+ T cells both in the lung and draining MLN. Transcription analyses reveal distinct transcriptional responses in lung cDC1 and cDC2 to intranasal nanofiber immunization. However, both DC subsets acquire shared transcriptional responses upon migration into the lymph node, thus uncovering a stepwise activation process of cDC1 and cDC2 toward their ability to cross-prime effector and functional memory CD8+ T cell responses.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Inhibition of PDE4 by apremilast attenuates skin fibrosis through directly suppressing activation of M1 and T cells.

In Acta Pharmacologica Sinica on 1 February 2022 by Lu, Q. K., Fan, C., et al.

Systemic sclerosis (SSc) is a life-threatening chronic connective tissue disease with the characteristics of skin fibrosis, vascular injury, and inflammatory infiltrations. Though inhibition of phosphodiesterase 4 (PDE4) has been turned out to be an effective strategy in suppressing inflammation through promoting the accumulation of intracellular cyclic adenosine monophosphate (cAMP), little is known about the functional modes of inhibiting PDE4 by apremilast on the process of SSc. The present research aimed to investigate the therapeutic effects and underlying mechanism of apremilast on SSc. Herein, we found that apremilast could markedly ameliorate the pathological manifestations of SSc, including skin dermal thickness, deposition of collagens, and increased expression of α-SMA. Further study demonstrated that apremilast suppressed the recruitment and activation of macrophages and T cells, along with the secretion of inflammatory cytokines, which accounted for the effects of apremilast on modulating the pro-fibrotic processes. Interestingly, apremilast could dose-dependently inhibit the activation of M1 and T cells in vitro through promoting the phosphorylation of CREB. In summary, our research suggested that inhibiting PDE4 by apremilast might provide a novel therapeutic option for clinical treatment of SSc patients.
© 2021. The Author(s), under exclusive licence to CPS and SIMM.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology
  • Pharmacology

TGF-β2 interfering oligonucleotides used as adjuvants for microbial vaccines.

In Journal of Leukocyte Biology on 1 November 2020 by Tu, L., Sun, X., et al.

The success of using immune checkpoint inhibitors to treat cancers implies that inhibiting an immunosuppressive cytokine, such as TGF-β2, could be a strategy to develop novel adjuvants for microbial vaccines. To develop nucleic acid based TGF-β2 inhibitors, we designed three antisense oligonucleotides, designated as TIO1, TIO2, and TIO3, targeting the conserve regions identical in human and mouse TGF-β2 mRNA 3'-untranslated region. In cultured immune cells, TIO3 and TIO1 significantly reduced the TGF-β2 mRNA expression and protein production. In mice, the TIO3 and TIO1, when formulated in various microbial vaccines, significantly enhanced the antibody response to the vaccines, and the TIO3-adjuvanted influenza virus vaccine induced effective protection against the influenza virus challenge. In the immunized mice, TIO3 formulated in microbial vaccines dramatically reduced surface-bound TGF-β2 expression on CD4+ T cells and CD19+ B cells in the lymph node (LN) cells and spleen cells; up-regulated the expression of CD40, CD80, CD86, and MHC II molecules on CD19+ B cells and CD11c+ dendritic cells; and promoted IFN-γ production in CD4+ T cells and CD8+ T cells in the LN cells. Overall, TIO3 or TIO1 could be used as a novel type of adjuvant for facilitating the microbial vaccines to elicit more vigorous and persistent antibody response by interfering with TGF-β2 expression.
©2020 Society for Leukocyte Biology.

  • Immunology and Microbiology

Dendritic cells (DCs) play a central role in both innate and adaptive immunity. Emerging evidence has demonstrated metabolic reprogramming during DC activation. However, how DC activation is linked with metabolic reprogramming remains unclear. Here we show that pyruvate kinase M2 (PKM2), the rate-limiting enzyme in the last step of glycolysis, is critical for LPS-induced DC activation. Upon DC activation, JNK signaling stimulated p300 association with PKM2 for the acetylation of lysine 433, a classic posttranslational modification critical for PKM2 destabilization and nuclear re-localization. Subsequently, nuclear PKM2 partnered with c-Rel to enhance Il12p35 expression, which is important for Th1 cell differentiation. Meanwhile, decreased enzymatic activity of PKM2 due to detetramerization facilitated glycolysis and fatty acid synthesis, helping DCs meet their need for biomacromolecules. Together, we provide evidence for metabolic control of DC activation and offer insights into aberrant immune responses due to dysregulated Th1 functions.
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

Enriched environment regulates thymocyte development and alleviates experimental autoimmune encephalomyelitis in mice.

In Brain, Behavior, and Immunity on 1 January 2019 by Xiao, R., Bergin, S. M., et al.

Environmental and social factors have profound impacts on immune homeostasis. Our work on environmental enrichment (EE) has revealed a novel anti-obesity and anticancer phenotype associated with enhanced activity of CD8+ cytotoxic T lymphocytes in secondary lymphoid tissues. Here we investigated how an EE modulated thymus and thymocyte development. EE decreased thymus mass and cellularity, decreased the double positive thymocyte population, increased the proportion of CD8+ T cells, reduced the CD4:CD8 ratio, and downregulated CD69 expression in T cells. In a model of multiple sclerosis: experimental autoimmune encephalomyelitis (EAE), EE alleviated symptoms, inhibited spinal cord inflammation through regulation of type 1 T-helper cells mediated by glucocorticoid receptor signaling, and prevented EAE-induced thymic disturbance. Our mechanistic studies demonstrated that hypothalamic BDNF activated a hypothalamic-pituitary-adrenal axis mediating the EE's thymic effects. Our results indicate that a lifestyle intervention links the nervous, endocrine, and adaptive immune system, allowing the body to adapt to internal and external environments.
Copyright © 2018 Elsevier Inc. All rights reserved.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb