Product Citations: 9

The use of programmed death-1 (PD-1) inhibitors in the neoadjuvant setting for patients with resectable stage III NSCLC has revolutionized this field in recent years. However, there is still 40%-60% of patients do not benefit from this approach. The complex interactions between immune cell subtypes and tertiary lymphoid structures (TLSs) within the tumor microenvironment (TME) may influence prognosis and the response to immunochemotherapy. This study aims to assess the relationship between immune cells subtypes and TLSs to better understand their impact on immunotherapy response.
This study initially compared the tertiary lymphoid structures (TLSs) density among patients who underwent immunochemotherapy, chemotherapy and upfront surgery using 123 tumor samples from stage-matched patients. Multiplex immunohistochemistry (mIHC) was employed to analyze the spatial distribution of PD-L1+CD11c+ cells and PD1+CD8+ T cells within TLSs. Cytometry by time-of-flight (CyTOF) was used to assess immune cell dynamics in paired biopsy and resection specimens from six patients who underwent immunochemotherapy. Key immune cells were validated in newly collected samples using flow cytometry, mIHC, and in vitro CAR-T cells model.
Patients who underwent neoadjuvant chemotherapy or immunochemotherapy exhibited increased TLSs compared to those who opted for upfront surgery. The TLS area-to-tumor area ratio distinguished pCR+MPR and NR patients in the immunochemotherapy group. Spatial analysis revealed variations in the distance between PD-L1+CD11c+ cells and PD1+CD8+ T cells within TLSs in the immunochemotherapy group. CyTOF analysis revealed an increase in the frequency of key immune cells (CCR7+CD127+CD69+CD4+ and CD38+CD8+ cells) following combined therapy. Treatment responders exhibited an increase in CCR7+CD4+ T cells, whereas CD38+CD8+ T cells were associated with compromised treatment effectiveness.
Immunochemotherapy and chemotherapy increase TLSs and granzyme B+ CD8+ T cells in tumors. The TLS area-to-tumor ratio distinguishes responders from non-responders, with PD-L1+ dendritic cells near CD8+PD-1+ T cells linked to efficacy, suggesting that PD-1 inhibitors disrupt harmful interactions. Post-immunochemotherapy, CD8+ T cells increase, but CD38+CD8+ T cells show reduced functionality. These findings highlight the complex immune dynamics and their implications for NSCLC treatment.
Copyright © 2024 Yang, You, Wang, Chen, Tang, Chen, Zhong, Song, Long, Xiang, Zhao and Xia.

  • Cancer Research
  • Immunology and Microbiology

Generation of antitumor chimeric antigen receptors incorporating T cell signaling motifs.

In Science Signaling on 23 July 2024 by Balagopalan, L., Moreno, T., et al.

Chimeric antigen receptor (CAR) T cells have been used to successfully treat various blood cancers, but adverse effects have limited their potential. Here, we developed chimeric adaptor proteins (CAPs) and CAR tyrosine kinases (CAR-TKs) in which the intracellular ζ T cell receptor (TCRζ) chain was replaced with intracellular protein domains to stimulate signaling downstream of the TCRζ chain. CAPs contain adaptor domains and the kinase domain of ZAP70, whereas CAR-TKs contain only ZAP70 domains. We hypothesized that CAPs and CAR-TKs would be more potent than CARs because they would bypass both the steps that define the signaling threshold of TCRζ and the inhibitory regulation of upstream molecules. CAPs were too potent and exhibited high tonic signaling in vitro. In contrast, CAR-TKs exhibited high antitumor efficacy and significantly enhanced long-term tumor clearance in leukemia-bearing NSG mice as compared with the conventional CD19-28ζ-CAR-T cells. CAR-TKs were activated in a manner independent of the kinase Lck and displayed slower phosphorylation kinetics and prolonged signaling compared with the 28ζ-CAR. Lck inhibition attenuated CAR-TK cell exhaustion and improved long-term function. The distinct signaling properties of CAR-TKs may therefore be harnessed to improve the in vivo efficacy of T cells engineered to express an antitumor chimeric receptor.

  • Biochemistry and Molecular biology
  • Immunology and Microbiology

De novoPADI4-mediated citrullination of histone H3 stimulates HIV-1 transcription

Preprint on BioRxiv : the Preprint Server for Biology on 18 March 2024 by Love, L., Jütte, B. B., et al.

HIV-1 infection establishes a reservoir of long-lived cells with integrated proviral DNA that can persist despite antiretroviral therapy (ART). The mechanisms governing the transcriptional regulation of the provirus are complex and incompletely understood. Here, we investigated the role of histone H3 citrullination, a post-translational modification catalyzed by protein-arginine deiminase type-4 (PADI4), in HIV-1 transcription and latency. We found that PADI4 inhibition by GSK484 reduced HIV-1 transcription after T cell activation in ex vivo cultures of CD4 T cells from viremic and ART treated people living with HIV-1 (PLWH). The effect was more pronounced in the viremic group. Using cell models of HIV-1 latency, we showed that PADI4-mediated citrullination of histone H3 occurred at the HIV-1 promoter upon T cell stimulation which facilitated proviral transcription. Citrullination of the H3R8 residue prevented heterochromatin formation. We also demonstrated that HIV-1 preferentially integrated into genomic regions marked by H3 citrullination and that proviruses in H3 citrullinated chromatin were more transcriptionally active and less prone to latency than those in non-citrullinated chromatin. Our data reveal a novel mechanism of HIV-1 transcriptional regulation by PADI4 and H3 citrullination and suggest a potential therapeutic target for reducing the size of the latent reservoir, as an approach to cure. Highlights The PADI4 enzyme stimulates HIV-1 transcription during T cell activation. PADI4 citrullinates histone H3 at the HIV-1 promoter upon T cell activation and inhibiting PADI4 reduces HIV-1 reactivation in ex vivo CD4 T cells from people living with HIV-1. H3cit is mostly found at gene promoters, and productive HIV-1 proviruses are more likely than latent or reactivatable proviruses, to integrate in chromatin susceptible for citrullination. H3cit prevents latency establishment by interfering with the binding of HP1α to H3K9me3.

  • Biochemistry and Molecular biology
  • Genetics

Bispecific antibodies have attracted more attention in recent years for the treatment of tumors, in which most of them target CD3, which mediates the killing of tumor cells by T cells. However, T-cell engager may cause serious side effects, including neurotoxicity and cytokine release syndrome. More safe treatments are still needed to address unmet medical needs, and NK cell-based immunotherapy is a safer and more effective way to treat tumors. Our study developed two IgG-like bispecific antibodies with the same configuration: BT1 (BCMA×CD3) attracted T cells and tumor cells, while BK1 (BCMA×CD16) attracted NK cells and tumor cells. Our study showed that BK1 mediated NK cell activation and upregulated the expression of CD69, CD107a, IFN-γ and TNF. In addition, BK1 elicited a stronger antitumor effect than BT1 both in vitro and in vivo. Combinatorial treatment (BK1+BT1) showed a stronger antitumor effect than either treatment alone, as indicated by in vitro experiments and in vivo murine models. More importantly, BK1 induced fewer proinflammatory cytokines than BT1 both in vitro and in vivo. Surprisingly, BK1 reduced cytokine production in the combinatorial treatment, suggesting the indispensable role of NK cells in the control of cytokine secretion by T cells. In conclusion, our study compared NK-cell engagers and T-cell engagers targeting BCMA. The results indicated that NK-cell engagers were more effective with less proinflammatory cytokine production. Furthermore, the use of NK-cell engagers in combinatorial treatment helped to reduce cytokine secretion by T cells, suggesting a bright future for NK-cell engagers in clinical settings.
Copyright © 2023 Xiao, Cheng, Zheng, Fang, Zhang, Sun, Tian and Sun.

  • FC/FACS
  • Immunology and Microbiology

Chimeric Antigen Receptor (CAR) T cell therapy has proven to be an effective strategy against hematological malignancies but persistence and activity against solid tumors must be further improved. One emerging strategy for enhancing efficacy is based on directing CAR T cells to antigen presenting cells (APCs). Activation of CAR T cells at the immunological synapse (IS) formed between APC and T cell is thought to promote strong, persistent antigen-specific T cell-mediated immune responses but requires integration of CAR ligands into the APC/T-cell interface. Here, we demonstrate that CAR ligand functionalized, lipid-coated, biodegradable polymer nanoparticles (NPs) that contain the ganglioside GM3 (GM3-NPs) bind to CD169 (Siglec-1)-expressing APCs and localize to the cell contact site between APCs and CAR T cells upon initiation of cell conjugates. The CD169+ APC/CAR T-cell interface is characterized by a strong optical colocalization of GM3-NPs and CARs, enrichment of F-actin, and recruitment of ZAP-70, indicative of integration of GM3-NPs into a functional IS. Ligands associated with GM3-NPs localized to the APC/T-cell contact site remain accessible to CARs and result in robust T-cell activation. Overall, this work identifies GM3-NPs as a potential antigen delivery platform for active targeting of CD169 expressing APCs and enhancement of CAR T-cell activation at the NP-containing IS.

  • Immunology and Microbiology
  • Neuroscience
View this product on CiteAb