Product Citations: 13

G2 arrest primes hematopoietic stem cells for megakaryopoiesis.

In Cell Reports on 23 July 2024 by Garyn, C. M., Bover, O., et al.

In contrast to most hematopoietic lineages, megakaryocytes (MKs) can derive rapidly and directly from hematopoietic stem cells (HSCs). The underlying mechanism is unclear, however. Here, we show that DNA damage induces MK markers in HSCs and that G2 arrest, an integral part of the DNA damage response, suffices for MK priming followed by irreversible MK differentiation in HSCs, but not in progenitors. We also show that replication stress causes DNA damage in HSCs and is at least in part due to uracil misincorporation in vitro and in vivo. Consistent with this notion, thymidine attenuated DNA damage, improved HSC maintenance, and reduced the generation of CD41+ MK-committed HSCs. Replication stress and concomitant MK differentiation is therefore one of the barriers to HSC maintenance. DNA damage-induced MK priming may allow rapid generation of a lineage essential to immediate organismal survival, while also removing damaged cells from the HSC pool.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Stem Cells and Developmental Biology

Splicing factor deficits render hematopoietic stem and progenitor cells sensitive to STAT3 inhibition.

In Cell Reports on 13 December 2022 by Potts, K. S., Cameron, R. C., et al.

Hematopoietic stem and progenitor cells (HSPCs) sustain lifelong hematopoiesis. Mutations of pre-mRNA splicing machinery, especially splicing factor 3b, subunit 1 (SF3B1), are early lesions found in malignancies arising from HSPC dysfunction. However, why splicing factor deficits contribute to HSPC defects remains incompletely understood. Using zebrafish, we show that HSPC formation in sf3b1 homozygous mutants is dependent on STAT3 activation. Clinically, mutations in SF3B1 are heterozygous; thus, we explored if targeting STAT3 could be a vulnerability in these cells. We show that SF3B1 heterozygosity confers heightened sensitivity to STAT3 inhibition in zebrafish, mouse, and human HSPCs. Cells carrying mutations in other splicing factors or treated with splicing modulators are also more sensitive to STAT3 inhibition. Mechanistically, we illustrate that STAT3 inhibition exacerbates aberrant splicing in SF3B1 mutant cells. Our findings reveal a conserved vulnerability of splicing factor mutant HSPCs that could allow for their selective targeting in hematologic malignancies.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)

Reinforced erythroid differentiation inhibits leukemogenic potential of t(8;21) leukemia.

In The FASEB Journal on 1 October 2022 by Wang, M. X., Yan, L., et al.

Oncoprotein AML1-ETO (AE) derived from t(8;21)(q22;q22) translocation is typically present in a portion of French-American-British-M2 subtype of acute myeloid leukemia (AML). Although these patients have relatively favorable prognoses, substantial numbers of them would relapse after conventional therapy. Here, we explored whether reinforcing the endogenous differentiation potential of t(8;21) AML cells would diminish the associated malignancy. In doing so, we noticed an expansion of immature erythroid blasts featured in both AML1-ETO9a (AE9a) and AE plus c-KIT (N822K) (AK) murine leukemic models. Interestingly, in the AE9a murine model, a spontaneous step-wise erythroid differentiation path, as characterized by the differential expression of CD43/c-Kit and the upregulation of several key erythroid transcription factors (TFs), accompanied the decline or loss of leukemia-initiating potential. Notably, overexpression of one of the key erythroid TFs, Ldb1, potently disrupted the repopulation of AE9a leukemic cells in vivo, suggesting a new promising intervention strategy of t(8;21) AML through enforcing their erythroid differentiation.
© 2022 Federation of American Societies for Experimental Biology.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research

Myeloid and lymphoid malignancies associated with chimeric FGFR1 kinases are the hallmark of stem cell leukemia and lymphoma syndrome (SCLL). In all cases, FGFR1 kinase is constitutively phosphoactivated as a result of chromosome translocations, which lead to acquisition of dimerization motifs in the chimeric proteins. Recently, we demonstrated that these chimeric kinases could be cleaved by granzyme B to generate a truncated derivative, tnFGFR1, which localized exclusively into the nucleus and was not phosphorylated.
Stem cell transduction and transplantation in syngeneic mice was used to assess the transforming ability of tnFGFR1 in bone marrow stem cells, and RPPA and RNA-Seq was used to examine the related signaling pathways and regulated target genes.
For the first time, we show that this non-classical truncated form of FGFR1 can independently lead to oncogenic transformation of hematopoietic stem cells in an animal model in vivo. These leukemia cells show a mixed immunophenotype with a B-cell B220 + Igm- profile in the majority of cells and Kit+ in virtually all cells, suggesting a stem cell disease. tnFGFR1, however, does not activate classic FGFR1 downstream signaling pathways but induces a distinct profile of altered gene expression with significant upregulation of transmembrane signaling receptors including FLT3 and KIT. We further show that de novo human AML also express tnFGFR1 which correlates with upregulation of FLT3 and KIT as in mouse leukemia cells. ChIP analysis demonstrates tnFGFR1 occupancy at the Flt3 and Kit promoters, suggesting a direct transcriptional regulation. Cells transformed with tnFGFR1 are insensitive to FGFR1 inhibitors but treatment of these cells with the Quizartinib (AC220) FLT3 inhibitor, suppresses in vitro growth and development of leukemia in vivo. Combined treatment with FGFR1 and FLT3 inhibitors provides increased survival compared to FGFR1 inhibition alone.
This study demonstrates a novel model for transformation of hematopoietic stem cells by chimeric FGFR1 kinases with the combined effects of direct protein activation by the full-length kinases and transcriptional regulation by the truncated nuclear tnFGFR1 derivative, which is associated with GZMB expression levels. Genes significantly upregulated by tnFGFR1 include Flt3 and Kit which promote a leukemia stem cell phenotype. In human AML, tnFGFR1 activation leads to increased FLT3 and KIT expression, and higher FLT3 and GZMB expression levels are associated with an inferior prognosis. These observations provide insights into the relative therapeutic value of targeting FGFR1 and FLT3 in treating AML with this characteristic gene expression profile.
© 2022. The Author(s).

  • Mus musculus (House mouse)
  • Cancer Research
  • Stem Cells and Developmental Biology

Cholinergic signals preserve haematopoietic stem cell quiescence during regenerative haematopoiesis.

In Nature Communications on 27 January 2022 by Fielding, C., García-García, A., et al.

The sympathetic nervous system has been evolutionary selected to respond to stress and activates haematopoietic stem cells via noradrenergic signals. However, the pathways preserving haematopoietic stem cell quiescence and maintenance under proliferative stress remain largely unknown. Here we found that cholinergic signals preserve haematopoietic stem cell quiescence in bone-associated (endosteal) bone marrow niches. Bone marrow cholinergic neural signals increase during stress haematopoiesis and are amplified through cholinergic osteoprogenitors. Lack of cholinergic innervation impairs balanced responses to chemotherapy or irradiation and reduces haematopoietic stem cell quiescence and self-renewal. Cholinergic signals activate α7 nicotinic receptor in bone marrow mesenchymal stromal cells leading to increased CXCL12 expression and haematopoietic stem cell quiescence. Consequently, nicotine exposure increases endosteal haematopoietic stem cell quiescence in vivo and impairs hematopoietic regeneration after haematopoietic stem cell transplantation in mice. In humans, smoking history is associated with delayed normalisation of platelet counts after allogeneic haematopoietic stem cell transplantation. These results suggest that cholinergic signals preserve stem cell quiescence under proliferative stress.
© 2022. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Stem Cells and Developmental Biology
View this product on CiteAb