Product Citations: 6

Elucidation of B-cell specific drug immunogenicity liabilities via a novel ex vivo assay.

In Frontiers in Immunology on 19 June 2025 by Looney, C. M., Ducret, A., et al.

The advent of large molecule therapeutics has revolutionized treatment options for previously unmet medical needs. This advent has also led to an increased impact of immunogenicity on drug efficacy and safety. In order to maximize the potential of large molecule therapeutics, immunogenicity-related liabilities must be identified as early in development as possible, using an integrated risk assessment that takes into account the various cell types and processes involved. Here, we describe the development of an ex vivo B-cell immunogenicity assay, to capture a key component of the immune response that has been missing from previously published ex vivo immunogenicity assays. Plasmablasts/plasma cells were preferentially expanded in this assay, a subset of which were drug-specific and presented drug-specific peptides on MHC Class II. This assay represents an important tool in the immunogenicity risk assessment toolkit, to allow liabilities to be identified and mitigated early in the drug development process.
Copyright © 2025 Looney, Ducret, Steiner, Dernick, Hartman, Siegel, Hickling, Odermatt and Marban-Doran.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

Development of an engineered extracellular vesicles-based vaccine platform for combined delivery of mRNA and protein to induce functional immunity.

In Journal of Controlled Release : Official Journal of the Controlled Release Society on 1 October 2024 by Luo, X., McAndrews, K. M., et al.

mRNA incorporated in lipid nanoparticles (LNPs) became a new class of vaccine modality for induction of immunity against COVID-19 and ushered in a new era in vaccine development. Here, we report a novel, easy-to-execute, and cost effective engineered extracellular vesicles (EVs)-based combined mRNA and protein vaccine platform (EVX-M+P vaccine) and explore its utility in proof-of-concept immunity studies in the settings of cancer and infectious disease. As a first example, we engineered EVs, natural nanoparticle carriers shed by all cells, to contain ovalbumin mRNA and protein (EVOvaM+P vaccine) to serve as cancer vaccine against ovalbumin-expressing melanoma tumors. EVOvaM+P administration to mice with established melanoma tumors resulted in tumor regression associated with effective humoral and adaptive immune responses. As a second example, we generated engineered EVs that contain Spike (S) mRNA and protein to serve as a combined mRNA and protein vaccine (EVSpikeM+P vaccine) against SARS-CoV-2 infection. EVSpikeM+P vaccine administration in mice and baboons elicited robust production of neutralizing IgG antibodies against RBD (receptor binding domain) of S protein and S protein specific T cell responses. Our proof-of-concept study describes a new platform with an ability for rapid development of combination mRNA and protein vaccines employing EVs for deployment against cancer and other diseases.
Copyright © 2024. Published by Elsevier B.V.

  • Genetics
  • Immunology and Microbiology

TMEM123 a key player in immune surveillance of colorectal cancer.

In Frontiers in Immunology on 10 July 2023 by Pesce, E., Cordiglieri, C., et al.

Colorectal cancer (CRC) is a leading cause of cancer-associated death. In the tumor site, the interplay between effector immune cells and cancer cells determines the balance between tumor elimination or outgrowth. We discovered that the protein TMEM123 is over-expressed in tumour-infiltrating CD4 and CD8 T lymphocytes and it contributes to their effector phenotype. The presence of infiltrating TMEM123+ CD8+ T cells is associated with better overall and metastasis-free survival. TMEM123 localizes in the protrusions of infiltrating T cells, it contributes to lymphocyte migration and cytoskeleton organization. TMEM123 silencing modulates the underlying signaling pathways dependent on the cytoskeletal regulator WASP and the Arp2/3 actin nucleation complex, which are required for synaptic force exertion. Using tumoroid-lymphocyte co-culture assays, we found that lymphocytes form clusters through TMEM123, anchoring to cancer cells and contributing to their killing. We propose an active role for TMEM123 in the anti-cancer activity of T cells within tumour microenvironment.
Copyright © 2023 Pesce, Cordiglieri, Bombaci, Eppenberger-Castori, Oliveto, Manara, Crosti, Ercan, Coto, Gobbini, Campagnoli, Donnarumma, Martinelli, Bevilacqua, De Camilli, Gruarin, Sarnicola, Cassinotti, Baldari, Viale, Biffo, Abrignani, Terracciano and Grifantini.

  • Cancer Research
  • Immunology and Microbiology

Impact of the New Generation Reconstituted Surfactant CHF5633 on Human CD4+ Lymphocytes.

In PLoS ONE on 15 April 2016 by Fehrholz, M., Glaser, K., et al.

Natural surfactant preparations, commonly isolated from porcine or bovine lungs, are used to treat respiratory distress syndrome in preterm infants. Besides biophysical effectiveness, several studies have documented additional immunomodulatory properties. Within the near future, synthetic surfactant preparations may be a promising alternative. CHF5633 is a new generation reconstituted synthetic surfactant preparation with defined composition, containing dipalmitoyl-phosphatidylcholine, palmitoyl-oleoyl-phosphatidylglycerol and synthetic analogs of surfactant protein (SP-) B and SP-C. While its biophysical effectiveness has been demonstrated in vitro and in vivo, possible immunomodulatory abilities are currently unknown.
The aim of the current study was to define a potential impact of CHF5633 and its single components on pro- and anti-inflammatory cytokine responses in human CD4+ lymphocytes.
Purified human CD4+ T cells were activated using anti CD3/CD28 antibodies and exposed to CHF5633, its components, or to the well-known animal-derived surfactant Poractant alfa (Curosurf®). Proliferative response and cell viability were assessed using flow cytometry and a methylthiazolyldiphenyltetrazolium bromide colorimetric assay. The mRNA expression of IFNγ, IL-2, IL-17A, IL-22, IL-4, and IL-10 was measured by quantitative PCR, while intracellular protein expression was assessed by means of flow cytometry.
Neither CHF5633 nor any of its phospholipid components with or without SP-B or SP-C analogs had any influence on proliferative ability and viability of CD4+ lymphocytes under the given conditions. IFNγ, IL-2, IL-17A, IL-22, IL-4, and IL-10 mRNA as well as IFNγ, IL-2, IL-4 and IL-10 protein levels were unaffected in both non-activated and activated CD4+ lymphocytes after exposure to CHF5633 or its constituents compared to non-exposed controls. However, in comparison to Curosurf®, expression levels of anti-inflammatory IL-4 and IL-10 mRNA were significantly increased in CHF5633 exposed CD4+ lymphocytes.
For the first time, the immunomodulatory capacity of CHF5633 on CD4+ lymphocytes was evaluated. CHF5633 did not show any cytotoxicity on CD4+ cells. Moreover, our in vitro data indicate that CHF5633 does not exert unintended pro-inflammatory effects on non-activated and activated CD4+ T cells. As far as anti-inflammatory cytokines are concerned, it might lack an overall reductive ability in comparison to animal-derived surfactants, potentially leaving pro- and anti-inflammatory cytokine response in balance.

  • Immunology and Microbiology

Aerosolized Ebola vaccine protects primates and elicits lung-resident T cell responses.

In The Journal of Clinical Investigation on 3 August 2015 by Meyer, M., Garron, T., et al.

Direct delivery of aerosolized vaccines to the respiratory mucosa elicits both systemic and mucosal responses. This vaccine strategy has not been tested for Ebola virus (EBOV) or other hemorrhagic fever viruses. Here, we examined the immunogenicity and protective efficacy of an aerosolized human parainfluenza virus type 3-vectored vaccine that expresses the glycoprotein (GP) of EBOV (HPIV3/EboGP) delivered to the respiratory tract. Rhesus macaques were vaccinated with aerosolized HPIV3/EboGP, liquid HPIV3/EboGP, or an unrelated, intramuscular, Venezuelan equine encephalitis replicon vaccine expressing EBOV GP. Serum and mucosal samples from aerosolized HPIV3/EboGP recipients exhibited high EBOV-specific IgG, IgA, and neutralizing antibody titers, which exceeded or equaled titers observed in liquid recipients. The HPIV3/EboGP vaccine induced an EBOV-specific cellular response that was greatest in the lungs and yielded polyfunctional CD8+ T cells, including a subset that expressed CD103 (αE integrin), and CD4+ T helper cells that were predominately type 1. The magnitude of the CD4+ T cell response was greater in aerosol vaccinees. The HPIV3/EboGP vaccine produced a more robust cell-mediated and humoral immune response than the systemic replicon vaccine. Moreover, 1 aerosol HPIV3/EboGP dose conferred 100% protection to macaques exposed to EBOV. Aerosol vaccination represents a useful and feasible vaccination mode that can be implemented with ease in a filovirus disease outbreak situation.

  • Immunology and Microbiology
View this product on CiteAb