Product Citations: 45

1 image found

Enhancing immunotherapy through PD-L1 upregulation: the promising combination of anti-PD-L1 plus mTOR inhibitors.

In Molecular Oncology on 11 September 2024 by Hernández-Prat, A., Rodríguez-Vida, A., et al.

Immune checkpoint inhibitors (ICIs) targeting the programmed cell death protein 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) pathway have transformed urothelial cancer (UC) therapy. The correlation between PD-L1 expression and ICI effectiveness is uncertain, leaving the role of PD-L1 as a predictive marker for ICI efficacy unclear. Among several ways to enhance the efficacy of ICI, trials are exploring combining ICIs with serine/threonine-protein kinase mTOR (mTOR) inhibitors in different tumor types. The potential interaction between mTOR inhibitors and PD-L1 expression in UC has not been well characterized. In our study, we investigated how phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway inhibitors (TAK-228, everolimus and TAK-117) affect PD-L1 expression and function in preclinical bladder cancer cell models. TAK-228 increased cell surface levels of glycosylated PD-L1 in all but one of the seven cell lines, regardless of baseline levels. TAK-228 promoted the secretion of epidermal growth factor (EGF) and interferon-β (IFNβ), both linked to PD-L1 protein induction. Blocking EGF and IFNβ receptors reversed the TAK-228-induced PD-L1 increase. Additionally, TAK-228 enhanced IFN-γ-induced PD-L1 expression and intracellular HLA-I levels in some cells. TAK-228-treated bladder cancer cells exhibited resistance to the cytotoxic effects of peripheral blood mononuclear cells (PBMCs) and cluster of differentiation 8 (CD8)+ T cells. The addition of an anti-PD-L1 antibody diminished this resistance in T24 cells. Increased expression of PD-L1 under TAK-228 exposure was confirmed in patient-derived explants (PDEs) treated ex vivo. These preclinical findings suggest that mTOR inhibition with TAK-228 can increase PD-L1 levels, potentially impacting the specific immune response against UC cells. This highlights the rationale for exploring the combination of mTOR inhibitors with ICIs in patients with advanced UC.
© 2024 The Author(s). Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  • Immunology and Microbiology

Triple-negative breast cancer (TNBC) shows an urgent need for new therapies. We discovered Ropporin-1 (ROPN1) as a target to treat TNBC with T-cells. ROPN1 showed high and homogenous expression in 90% of primary and metastatic TNBC but not in healthy tissues. HLA-A2-binding peptides were detected via immunopeptidomics and predictions and used to retrieve T-cell receptors (TCRs) from naïve repertoires. Following gene introduction into T-cells and stringent selection, we retrieved a highly specific TCR directed against the epitope FLYTYIAKV that did not recognize non-cognate epitopes from alternative source proteins. Notably, this TCR mediated killing of three-dimensional tumoroids in vitro and tumor cells in vivo and outperformed standard-of-care drugs. Finally, the T-cell product expressing this TCR and manufactured using a clinical protocol fulfilled standard safety and efficacy assays. Collectively, we have identified and preclinically validated ROPN1 as a target and anti-ROPN1 TCR T-cells as a treatment for the vast majority of TNBC patients.

  • Cancer Research
  • Immunology and Microbiology

HLA-class II restricted TCR targeting human papillomavirus type 18 E7 induces solid tumor remission in mice.

In Nature Communications on 13 March 2024 by Long, J., Chen, X., et al.

T cell receptor (TCR)-engineered T cell therapy is a promising potential treatment for solid tumors, with preliminary efficacy demonstrated in clinical trials. However, obtaining clinically effective TCR molecules remains a major challenge. We have developed a strategy for cloning tumor-specific TCRs from long-term surviving patients who have responded to immunotherapy. Here, we report the identification of a TCR (10F04), which is human leukocyte antigen (HLA)-DRA/DRB1*09:01 restricted and human papillomavirus type 18 (HPV18) E784-98 specific, from a multiple antigens stimulating cellular therapy (MASCT) benefited metastatic cervical cancer patient. Upon transduction into human T cells, the 10F04 TCR demonstrated robust antitumor activity in both in vitro and in vivo models. Notably, the TCR effectively redirected both CD4+ and CD8+ T cells to specifically recognize tumor cells and induced multiple cytokine secretion along with durable antitumor activity and outstanding safety profiles. As a result, this TCR is currently being investigated in a phase I clinical trial for treating HPV18-positive cancers. This study provides an approach for developing safe and effective TCR-T therapies, while underscoring the potential of HLA class II-restricted TCR-T therapy as a cancer treatment.
© 2024. The Author(s).

  • FC/FACS
  • Cancer Research

Identification of novel canonical and cryptic HCMV-specific T-cell epitopes for HLA-A∗03 and HLA-B∗15 via peptide-PRISM.

In Blood Advances on 13 February 2024 by Rein, A. F., Lauruschkat, C. D., et al.

Human cytomegalovirus (HCMV) reactivation poses a substantial risk to patients receiving tranplants. Effective risk stratification and vaccine development is hampered by a lack of HCMV-derived immunogenic peptides in patients with common HLA-A∗03:01 and HLA-B∗15:01 haplotypes. This study aimed to discover novel HCMV immunogenic peptides for these haplotypes by combining ribosome sequencing (Ribo-seq) and mass spectrometry with state-of-the-art computational tools, Peptide-PRISM and Probabilistic Inference of Codon Activities by an EM Algorithm. Furthermore, using machine learning, an algorithm was developed to predict immunogenicity based on translational activity, binding affinity, and peptide localization within small open reading frames to identify the most promising peptides for in vitro validation. Immunogenicity of these peptides was subsequently tested by analyzing peptide-specific T-cell responses of HCMV-seropositive and -seronegative healthy donors as well as patients with transplants. This resulted in the direct identification of 3 canonical and 1 cryptic HLA-A∗03-restricted immunogenic peptides as well as 5 canonical and 1 cryptic HLA-B∗15-restricted immunogenic peptide, with a specific interferon gamma-positive (IFN-γ+)/CD8+ T-cell response of ≥0.02%. High T-cell responses were detected against 2 HLA-A∗03-restricted and 3 HLA-B∗15-restricted canonical peptides with frequencies of up to 8.77% IFN-γ+/CD8+ T cells in patients after allogeneic stem cell transplantation. Therefore, our comprehensive strategy establishes a framework for efficient identification of novel immunogenic peptides from both existing and novel Ribo-seq data sets.
© 2024 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.

  • Immunology and Microbiology

Effector T cell chemokine IP-10 predicts cardiac recovery and clinical outcomes post-myocardial infarction.

In Frontiers in Immunology on 10 July 2023 by Sopova, K., Tual-Chalot, S., et al.

Preclinical data suggest that activation of the adaptive immune system is critical for myocardial repair processes in acute myocardial infarction. The aim of the present study was to determine the clinical value of baseline effector T cell chemokine IP-10 blood levels in the acute phase of ST-segment elevation myocardial infarction (STEMI) for the prediction of the left ventricular function changes and cardiovascular outcomes after STEMI.
Serum IP-10 levels were retrospectively quantified in two independent cohorts of STEMI patients undergoing primary percutaneous coronary intervention.
We report a biphasic response of the effector T cell trafficking chemokine IP-10 characterized by an initial increase of its serum levels in the acute phase of STEMI followed by a rapid reduction at 90min post reperfusion. Patients at the highest IP-10 tertile presented also with more CD4 effector memory T cells (CD4 TEM cells), but not other T cell subtypes, in blood. In the Newcastle cohort (n=47), patients in the highest IP-10 tertile or CD4 TEM cells at admission exhibited an improved cardiac systolic function 12 weeks after STEMI compared to patients in the lowest IP-10 tertile. In the Heidelberg cohort (n=331), STEMI patients were followed for a median of 540 days for major adverse cardiovascular events (MACE). Patients presenting with higher serum IP-10 levels at admission had a lower risk for MACE after adjustment for traditional risk factors, CRP and high-sensitivity troponin-T levels (highest vs. rest quarters: HR [95% CI]=0.420 [0.218-0.808]).
Increased serum levels of IP-10 in the acute phase of STEMI predict a better recovery in cardiac systolic function and less adverse events in patients after STEMI.
Copyright © 2023 Sopova, Tual-Chalot, Mueller-Hennessen, Vlachogiannis, Georgiopoulos, Biener, Sachse, Turchinovich, Polycarpou-Schwarz, Spray, Maneta, Bennaceur, Mohammad, Richardson, Gatsiou, Langer, Frey, Stamatelopoulos, Heineke, Duerschmied, Giannitsis, Spyridopoulos and Stellos.

  • FC/FACS
  • Cardiovascular biology
  • Immunology and Microbiology
View this product on CiteAb