Product Citations: 2

Complex interactions between HSV-1 and infiltrating immune cells play important roles in establishing localized, acute virus replication as well as chronic latent infection. The extent and duration of initial virus replication are the key determinants of subsequent pathologic inflammatory responses and therefore, the accumulation of immune cell populations at this time point is a key target for prevention. Therefore, we evaluated the role of various immune cell infiltrates between 1 h and 28 days post-infection (PI) using mice infected with virulent HSV-1 strain McKrae without corneal scarification. The effect of corneal scarification on immune cell infiltrates was also determined. We first determined the activation status and origin of macrophage infiltrates as early as 1 h PI. We found a sharp increase in the total macrophage population after 12 h PI, that was primarily due to infiltration of CCR2+ migratory macrophages, mostly in M1 status (MHC II+). The number of CCR2- resident macrophages, mostly unpolarized (M0), increased gradually over time and peaked at 48 h PI. Interestingly, some of the resident macrophages gained an M2-like phenotype (CD206Low), which peaked at 12 h PI, concurrent with M1 macrophage infiltration. From 1-7 days PI, infiltration of various immune cells correlated strongly with HSV-1 replication, with neutrophils showing the biggest increase, and NKT cells the biggest decrease, after infection. The presence of geographical ulcer did not correlate with increased infiltration, while mice with corneal scarring had significantly more immune cell infiltration than those without corneal scarring. Overall, we showed time-dependent infiltration of various immune cells in the eye of HSV-1 infected mice. Initial infiltration of macrophages followed by infiltration of T cells at later times PI demonstrates the importance of targeting macrophages rather than other immune cells type, for therapeutic treatment of HSV-1.

  • FC/FACS
  • Mus musculus (House mouse)

Deletion of Wiskott-Aldrich syndrome protein triggers Rac2 activity and increased cross-presentation by dendritic cells.

In Nature Communications on 18 July 2016 by Baptista, M. A., Keszei, M., et al.

Wiskott-Aldrich syndrome (WAS) is caused by loss-of-function mutations in the WASp gene. Decreased cellular responses in WASp-deficient cells have been interpreted to mean that WASp directly regulates these responses in WASp-sufficient cells. Here, we identify an exception to this concept and show that WASp-deficient dendritic cells have increased activation of Rac2 that support cross-presentation to CD8(+) T cells. Using two different skin pathology models, WASp-deficient mice show an accumulation of dendritic cells in the skin and increased expansion of IFNγ-producing CD8(+) T cells in the draining lymph node and spleen. Specific deletion of WASp in dendritic cells leads to marked expansion of CD8(+) T cells at the expense of CD4(+) T cells. WASp-deficient dendritic cells induce increased cross-presentation to CD8(+) T cells by activating Rac2 that maintains a near neutral pH of phagosomes. Our data reveals an intricate balance between activation of WASp and Rac2 signalling pathways in dendritic cells.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb