Product Citations: 14

Inhibition of PKCθ Abrogates CD8+ T Cell-Mediated Neurotoxicity in Murine Cerebral Malaria.

In Biomedicines on 22 October 2025 by Albrecht-Schgör, K., Stefan, V. E., et al.

Background: Cerebral malaria (CM) is a severe and often fatal complication of Plasmodium falciparum infection that causes devastating brain injury largely through immune-mediated mechanisms. Pathogenic brain-infiltrating CD8+ T cells are key drivers of CM pathology, yet the intracellular signals enabling their harmful autoimmune-like activity remain poorly defined. Here, we identify protein kinase C θ (PKCθ), a central antigen receptor-signalling mediator, as a critical contributor to experimental cerebral malaria (ECM). Methods/Results: Using a PKCθ null allele mouse strain on a C57BL/6N background, we demonstrate that PKCθ deficiency significantly improves survival in Plasmodium berghei ANKA (PbA)-infected mice without altering parasite burdens in the blood or brain. Mechanistically, loss of PKCθ skews T cell differentiation towards central memory (Tcm) rather than effector memory (Tem) phenotypes, thereby reducing effector differentiation and sequestration of CD8+ T cells in the cerebral microvasculature. This prevents extensive neurovascular damage, preserves neural tissue integrity, and alleviates neurological signs and symptoms. Our findings provide genetic evidence that PKCθ drives CD8+ T cell-mediated brain injury in ECM. Conclusions: These results underscore the potential for repurposing clinically PKCθ inhibitors as host-targeted interventions to protect against cerebral injury and improve outcomes in patients with CM.

  • Immunology and Microbiology

A hotspot mutation targeting the R-RAS2 GTPase acts as a potent oncogenic driver in a wide spectrum of tumors.

In Cell Reports on 15 March 2022 by Fernández-Pisonero, I., Clavain, L., et al.

A missense change in RRAS2 (Gln72 to Leu), analogous to the Gln61-to-Leu mutation of RAS oncoproteins, has been identified as a long-tail hotspot mutation in cancer and Noonan syndrome. However, the relevance of this mutation for in vivo tumorigenesis remains understudied. Here we show, using an inducible knockin mouse model, that R-Ras2Q72L triggers rapid development of a wide spectrum of tumors when somatically expressed in adult tissues. These tumors show limited overlap with those originated by classical Ras oncogenes. R-Ras2Q72L-driven tumors can be classified into different subtypes according to therapeutic susceptibility. Importantly, the most relevant R-Ras2Q72L-driven tumors are dependent on mTORC1 but independent of phosphatidylinositol 3-kinase-, MEK-, and Ral guanosine diphosphate (GDP) dissociation stimulator. This pharmacological vulnerability is due to the extensive rewiring by R-Ras2Q72L of pathways that orthogonally stimulate mTORC1 signaling. These findings demonstrate that RRAS2Q72L is a bona fide oncogenic driver and unveil therapeutic strategies for patients with cancer and Noonan syndrome bearing RRAS2 mutations.Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research

Cancer-associated mutations in VAV1 trigger variegated signaling outputs and T-cell lymphomagenesis.

In The EMBO Journal on 15 November 2021 by Robles-Valero, J., Fernández-Nevado, L., et al.

Mutations in VAV1, a gene that encodes a multifunctional protein important for lymphocytes, are found at different frequencies in peripheral T-cell lymphoma (PTCL), non-small cell lung cancer, and other tumors. However, their pathobiological significance remains unsettled. After cataloguing 51 cancer-associated VAV1 mutations, we show here that they can be classified in five subtypes according to functional impact on the three main VAV1 signaling branches, GEF-dependent activation of RAC1, GEF-independent adaptor-like, and tumor suppressor functions. These mutations target new and previously established regulatory layers of the protein, leading to quantitative and qualitative changes in VAV1 signaling output. We also demonstrate that the most frequent VAV1 mutant subtype drives PTCL formation in mice. This process requires the concurrent engagement of two downstream signaling branches that promote the chronic activation and transformation of follicular helper T cells. Collectively, these data reveal the genetic constraints associated with the lymphomagenic potential of VAV1 mutant subsets, similarities with other PTCL driver genes, and potential therapeutic vulnerabilities.
© 2021 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Distinct Roles of Vav Family Members in Adaptive and Innate Immune Models of Arthritis.

In Biomedicines on 19 June 2021 by Conde, J., Fernández-Pisonero, I., et al.

Genetic evidence suggests that three members of the VAV family (VAV1, VAV2 and VAV3) of signal transduction proteins could play important roles in rheumatoid arthritis. However, it is not known currently whether the inhibition of these proteins protects against this disease and, if so, the number of family members that must be eliminated to get a therapeutic impact. To address this issue, we have used a collection of single and compound Vav family knockout mice in experimental models for antigen-dependent (methylated bovine serum albumin injections) and neutrophil-dependent (Zymosan A injections) rheumatoid arthritis in mice. We show here that the specific elimination of Vav1 is sufficient to block the development of antigen-induced arthritis. This protection is likely associated with the roles of this Vav family member in the development and selection of immature T cells within the thymus as well as in the subsequent proliferation and differentiation of effector T cells. By contrast, we have found that depletion of Vav2 reduces the number of neutrophils present in the joints of Zymosan A-treated mice. Despite this, the elimination of Vav2 does not protect against the joint degeneration triggered by this experimental model. These findings indicate that Vav1 is the most important pharmacological target within this family, although its main role is limited to the protection against antigen-induced rheumatoid arthritis. They also indicate that the three Vav family proteins do not play redundant roles in these pathobiological processes.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Potential of Magnetic Hyperthermia to Stimulate Localized Immune Activation.

In Small (Weinheim An Der Bergstrasse, Germany) on 1 April 2021 by Carter, T. J., Agliardi, G., et al.

Magnetic hyperthermia (MH) harnesses the heat-releasing properties of superparamagnetic iron oxide nanoparticles (SPIONs) and has potential to stimulate immune activation in the tumor microenvironment whilst sparing surrounding normal tissues. To assess feasibility of localized MH in vivo, SPIONs are injected intratumorally and their fate tracked by Zirconium-89-positron emission tomography, histological analysis, and electron microscopy. Experiments show that an average of 49% (21-87%, n = 9) of SPIONs are retained within the tumor or immediately surrounding tissue. In situ heating is subsequently generated by exposure to an externally applied alternating magnetic field and monitored by thermal imaging. Tissue response to hyperthermia, measured by immunohistochemical image analysis, reveals specific and localized heat-shock protein expression following treatment. Tumor growth inhibition is also observed. To evaluate the potential effects of MH on the immune landscape, flow cytometry is used to characterize immune cells from excised tumors and draining lymph nodes. Results show an influx of activated cytotoxic T cells, alongside an increase in proliferating regulatory T cells, following treatment. Complementary changes are found in draining lymph nodes. In conclusion, results indicate that biologically reactive MH is achievable in vivo and can generate localized changes consistent with an anti-tumor immune response.
© 2021 The Authors. Small published by Wiley-VCH GmbH.

  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb