Product Citations: 22

The introduction of checkpoint immunotherapeutic agents in the last decade has revolutionized cancer treatment. Although anti-PD-1, anti-PD-L1 and anti-CTLA4 are promising therapies, many patients fail to respond or relapse due to drug resistance potentially due to redundancy of immune checkpoints. One of the ways to improve the efficacy of this cancer treatment is to target two or even three immune checkpoints. To date, the benefit of combined anti-VISTA/anti-PD-L1 therapy has been confirmed, but no one has investigated the efficacy of blocking these negative immune checkpoints with a bispecific anti-VISTA/anti-PD-L1 antibody.
In this study, the bispecific antibodies (bsAbs) were produced in three formats: symmetric (IgG-HC-scFv), asymmetric (Fab-scFv-Fc(KIH)) and 2 x scFv. The binding and blocking properties of these bispecific antibodies (bsAbs) and their efficacy compared to monotherapy and combination therapy were then determined using endometrial (RL95-2), pancreatic (PANC-1) and breast (BT-20) cancer cell lines.
The bsAbs generated in this study showed weaker binding properties to PD-1 and VISTA in ELISA (EC50) than the parent antibodies (atezolizumab and onvatilimab). Blockade of VISTA/VSIG-3 binding was also weaker with bsAbs compared to onvatilimab, but the ability to block the PD-1/PD-L1 pathway was slightly better than with atezolizumab. The Fc-based bsAbs showed statistically significant higher levels of lysis of endometrial, breast and pancreatic cancer cells. The symmetric bsAbs (IgG-HC-scFv) showed the most promising therapeutic potential. Higher levels of cancer cell lysis were associated with higher levels of pro-inflammatory cytokines. Both the asymmetric and symmetric bsAbs resulted in higher secretion levels of IFN-γ, TNFα and Granzyme B than anti-VISTA, anti-PD-L1 monotherapy and anti-VISTA/anti-PD-L1 combination therapy.
The high level of tumor cell lysis and increased expression of pro-inflammatory cytokines induced by the Fc-based bsAbs suggest a novel approach for the treatment of pancreatic, endometrial and breast cancer.
Copyright © 2025 Bielski, Barczyński, Mikitiuk, Myrcha, Rykała, Boon, Gąsior, Hec-Gałązka, Holak and Sitar.

  • Cancer Research
  • Immunology and Microbiology

The Level of Circulating M-MDSCs as an Indicator for the Therapeutic Outcome of BNCT in End-Stage Malignant Brain Tumor Patients.

In International Journal of Particle Therapy on 1 December 2024 by Chang, C. H., Yu, C. F., et al.

Boron neutron capture therapy (BNCT) is a promising treatment modality for patients diagnosed with malignant brain tumors. It is currently used for emergency and compassionate purposes to treat end-stage malignant glioma or recurrent head and neck cancer patients in Taiwan. Understanding the factors influencing treatment response is crucial for optimizing patient care. This study aimed to investigate the association between tumor response and various parameters in end-stage malignant glioma patients following BNCT.
Fifteen patients with end-stage malignant brain tumors underwent a single fraction of BNCT. The treatment response was evaluated using cranial magnetic resonance imaging, and the association between treatment response and BNCT parameters was analyzed. Additionally, circulating myeloid-derived suppressor cell (MDSC) levels were measured by flow cytometry and correlated with patients' survival.
BNCT exhibited significant therapeutic efficacy in reducing tumor volume of these end-stage glioma patients, with 3 patients achieving complete response and 10 patients achieving partial response within 1 month, resulting in an impressive objective response rate of 80%. The median overall survival is 9 (1.77, 12.47) months, and the progression-free survival is 1.34 (0.53, 9.53) months. Kaplan-Meier analysis showed that the patients with complete response and partial response displayed better survival than those with stable disease. Treatment response was not significantly associated with initial tumor size, blood boron concentration, tumor-to-normal tissue ratio, or tumor-to-blood ratio. The ROC curve revealed a cut-off value of 5% of circulating M-MDSCs with a sensitivity of 66.67% and specificity of 73.33%, respectively, for predicting the glioma patient's response to BNCT.
This clinical study demonstrates that BNCT can reduce tumor burden, improve disease control, and prolong survival in end-stage glioma patients. Circulating M-MDSCs may serve as a predictive indicator for the treatment response of these patients following BNCT.
© 2024 The Author(s).

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research

A CXCR4 partial agonist improves immunotherapy by targeting polymorphonuclear myeloid-derived suppressor cells and cancer-driven granulopoiesis

Preprint on BioRxiv : the Preprint Server for Biology on 11 October 2024 by Qian, J., Ma, C., et al.

Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are pathologically activated neutrophils that potently impair immunotherapy responses. The chemokine receptor CXCR4, a central regulator of hematopoiesis, represents an attractive PMN-MDSC target1. Here, we fused a secreted CXCR4 partial agonist TFF2 to mouse serum albumin (MSA) and demonstrated that TFF2-MSA peptide synergized with anti-PD-1 to induce tumor regression or eradication, inhibited distant metastases, and prolonged survival in multiple gastric cancer (GC) models. Using histidine decarboxylase (Hdc)-GFP transgenic mice to track PMN-MDSC in vivo , we found TFF2-MSA selectively reduced the immunosuppressive Hdc-GFP + CXCR4 hi tumor PMN-MDSCs while preserving proinflammatory neutrophils, thereby boosting CD8 + T cell-mediated anti-tumor response together with anti-PD-1. Furthermore, TFF2-MSA systemically reduced PMN-MDSCs and bone marrow granulopoiesis. In contrast, CXCR4 antagonism plus anti-PD-1 failed to provide a similar therapeutic benefit. In GC patients, expanded PMN-MDSCs containing a prominent CXCR4 + LOX-1 + subset are inversely correlated with the TFF2 level and CD8 + T cells in circulation. Collectively, our studies introduce a strategy of using CXCR4 partial agonism to restore anti-PD-1 sensitivity in GC by targeting PMN-MDSCs and granulopoiesis.

  • Cancer Research
  • Immunology and Microbiology

Background: In advanced head and neck cancer (HNC) patients, 50-60% experience loco-regional relapse and distant metastasis. Boron neutron capture therapy (BNCT) has shown remarkable therapeutic response in recurrent HNC, but there is still a 70% chance of local recurrence. This study aimed to identify a suitable liquid biomarker to assess patient response following BNCT. Myeloid-derived suppressor cells (MDSCs) are immune-suppressive cells that inhibit cytotoxic T cells. Circulating MDSC levels have been linked to the clinical stage and prognosis in HNSCC. Methods: Five patients with recurrent head and neck cancer underwent a treatment regimen that commenced with BNCT, followed by fractionated image-guided intensity-modulated radiotherapy (IG-IMRT). Liquid biopsy analysis via flow cytometry and tumor volume analysis by clinical imaging were conducted at three stages: before BNCT, before the first fraction of IG-IMRT, and one month after the last fraction of IG-IMRT. Results: Compared to other MDSC subtypes, monocytic MDSCs (M-MDSCs) exhibited a notable correlation with tumor volume. This strong correlation was observed at all testing time points except one month after BNCT treatment. Conclusions: This case series highlights a strong link between tumor size and circulating M-MDSC levels before BNCT and one month after the last IG-IMRT treatment in recurrent head and neck cancer patients. These results suggest that the level of circulating M-MDSCs could be a marker for monitoring tumor progression in recurrent HNC patients following radiation therapy, including BNCT.

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research

S100A8/A9 predicts response to PIM kinase and PD-1/PD-L1 inhibition in triple-negative breast cancer mouse models.

In Commun Med (Lond) on 20 February 2024 by Begg, L. R., Orriols, A., et al.

Understanding why some triple-negative breast cancer (TNBC) patients respond poorly to existing therapies while others respond well remains a challenge. This study aims to understand the potential underlying mechanisms distinguishing early-stage TNBC tumors that respond to clinical intervention from non-responders, as well as to identify clinically viable therapeutic strategies, specifically for TNBC patients who may not benefit from existing therapies.
We conducted retrospective bioinformatics analysis of historical gene expression datasets to identify a group of genes whose expression levels in early-stage tumors predict poor clinical outcomes in TNBC. In vitro small-molecule screening, genetic manipulation, and drug treatment in syngeneic mouse models of TNBC were utilized to investigate potential therapeutic strategies and elucidate mechanisms of drug action.
Our bioinformatics analysis reveals a robust association between increased expression of immunosuppressive cytokine S100A8/A9 in early-stage tumors and subsequent disease progression in TNBC. A targeted small-molecule screen identifies PIM kinase inhibitors as capable of decreasing S100A8/A9 expression in multiple cell types, including TNBC and immunosuppressive myeloid cells. Combining PIM inhibition and immune checkpoint blockade induces significant antitumor responses, especially in otherwise resistant S100A8/A9-high PD-1/PD-L1-positive tumors. Notably, serum S100A8/A9 levels mirror those of tumor S100A8/A9 in a syngeneic mouse model of TNBC.
Our data propose S100A8/A9 as a potential predictive and pharmacodynamic biomarker in clinical trials evaluating combination therapy targeting PIM and immune checkpoints in TNBC. This work encourages the development of S100A8/A9-based liquid biopsy tests for treatment guidance.
© 2024. The Author(s).

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research
View this product on CiteAb