Product Citations: 4

Decreased left ventricle (LV) function caused by genetic mutations or injury often leads to debilitating and fatal cardiovascular disease. LV cardiomyocytes are, therefore, a potentially valuable therapeutical target. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are neither homogeneous nor functionally mature, which reduces their utility. Here, we exploit cardiac development knowledge to instruct differentiation of hPSCs specifically toward LV cardiomyocytes. Correct mesoderm patterning and retinoic acid pathway blocking are essential to generate near-homogenous LV-specific hPSC-CMs (hPSC-LV-CMs). These cells transit via first heart field progenitors and display typical ventricular action potentials. Importantly, hPSC-LV-CMs exhibit increased metabolism, reduced proliferation, and improved cytoarchitecture and functional maturity compared with age-matched cardiomyocytes generated using the standard WNT-ON/WNT-OFF protocol. Similarly, engineered heart tissues made from hPSC-LV-CMs are better organized, produce higher force, and beat more slowly but can be paced to physiological levels. Together, we show that functionally matured hPSC-LV-CMs can be obtained rapidly without exposure to current maturation regimes.
Crown Copyright © 2023.

  • FC/FACS
  • Homo sapiens (Human)
  • Biochemistry and Molecular biology
  • Cell Biology
  • Stem Cells and Developmental Biology

Vasculogenic mimicry is associated with trastuzumab resistance of HER2-positive breast cancer.

In Breast Cancer Research : BCR on 6 August 2019 by Hori, A., Shimoda, M., et al.

Trastuzumab is a drug that targets the receptor tyrosine kinase HER2 and is essential for the treatment of HER2-positive breast cancer. Resistance to the drug leads to severe consequences, including disease recurrence, tumor enlargement, and metastasis. We hypothesized that trastuzumab treatment might be associated with phenotypic switching in HER2-positive breast cancer cells (BCCs), enabling them to escape and survive the effect of trastuzumab.
We conducted comprehensive immunophenotyping to detect phenotypic changes in HER2-positive BCCs treated with trastuzumab, based on criteria determined a priori. Based on immunophenotyping results, we characterized the vascular phenotypes of HER2-positive BCCs by western blotting, real-time RT-PCR, and tube formation assay. The vascular phenotype of tumor cells from clinical samples was evaluated by staining with periodic acid-Schiff and an anti-CD31 antibody. We explored small molecule inhibitors that suppress tube formation and determined the inhibitory mechanism.
Out of 242 cell surface antigens, 9 antigens were significantly upregulated and 3 were significantly downregulated by trastuzumab treatment. All upregulated antigens were related to endothelial and stem cell phenotypes, suggesting that trastuzumab treatment might be correlated to switching to a vascular phenotype, namely, vasculogenic mimicry (VM). Several VM markers were upregulated in trastuzumab-treated cells, but these cells did not form tubes on Matrigel, a functional hallmark of VM. Upon analysis of three trastuzumab-resistant HER2-positive cell lines, we found that all three cell lines showed tube formation on Matrigel in the presence of angiogenic growth factors including EGF, FGF2, IGF1, or VEGF. Clinically, VM channels significantly increased in surviving cancer cell clusters of surgically removed tumors pretreated with trastuzumab and chemotherapy compared to both surgically removed tumors without prior systemic treatment and tumors biopsied before presurgical treatment with trastuzumab. Finally, we found that salinomycin completely suppressed VM in all three trastuzumab-resistant cell lines through disruption of actin cytoskeletal integrity.
VM promotes metastasis and worsens patient outcomes. The present study indicates that HER2-positive BCCs can exhibit VM in an angiogenic microenvironment after eventually acquiring trastuzumab resistance. The clinical finding supports this in vitro observation. Thus, targeting VM might provide a therapeutic benefit to patients with HER2-positive breast cancer.

  • Homo sapiens (Human)
  • Cancer Research

Preparation of mouse embryonic fibroblast (MEF) feeder cells to maintain pluripotent stem cells (PSCs) is time consuming and involved in animal issues. Here, we demonstrated a novel method to prepare feeder cells with high efficiency, timesaving, and low costs. MEFs in 3 × 104 cell/cm2 were fixed by methanol for 5 min and air drying for 5 min. Thereafter, the methanol fixed MEF cells (MT-MEF) were able to be used directly to culture PSCs or stored at room temperature for the future usage. PSCs cultured on MT-MEF could be continuously expanded for over 40 passages with the naïve pluripotency. MT-MEFs could also be used to maintain human and pig iPSCs. Moreover, methanol fixed MEFs' culture dish was able to be reused for at least 4 times, and to be applied for antibiotic resistant screening assay to establishing stable transfected PSC lines. Alternatively, the immortalized cell lines, for instance NIH3T3 cells, could also be fixed by methanol and used as feeder cells to maintain PSCs. Thus, this novel means of methanol fixed feeder cells can completely replace the mitomycin C and gamma radiation treated MEF feeder cells, and be used to maintain PSCs derived from mouse as well as other animal species.

  • FC/FACS
  • Stem Cells and Developmental Biology

Podocalyxin-like protein (PODXL) is a member of CD34 family proteins. It is the protein that carries many post-translational epitopes responsible for various pluripotent surface markers including TRA-1-60, TRA-1-81, GCTM2, GP200, and mAb84. However, PODXL has not attracted the attention of stem cell biologists. Here, we report several features of PODXL mRNA and protein in pluripotent stem cells. Similar to the modification-dependent pluripotent epitopes, PODXL transcripts and carrier protein are also features of pluripotency. PODXL is highly expressed in early human embryos from oocytes up to four-cell stages. During reprogramming of human cells to pluripotency, in contrast to TRA-1-60 and TRA-1-81, PODXL is activated by KLF4 at a very early time of reprogramming. Although TRA-1-60 and TRA-1-81 are completely lost upon differentiation, a residual PODXL(+) population exists even after extended differentiation and they were identified by the universal human PODXL epitope 3D3. Unlike TRA-1-60 and TRA-1-81 epitopes that are unique to primate pluripotent stem cells (PSCs), PODXL carrier protein can be used as a murine surface marker. Most importantly, antibody to 3D3 epitope causes massive necrosis and apoptosis of human PSCs (hPSCs). We suggest that 3D3 antibody could be employed to eliminate the tumorigenic pluripotent cells in hPSC-derived cells for cell transplantation.

  • FC/FACS
  • Stem Cells and Developmental Biology
View this product on CiteAb