Product Citations: 7

Neuromyelitis optica spectrum disorders (NMOSD) are inflammatory autoimmune disorders of the CNS. IgG autoantibodies targeting the aquaporin-4 water channel (AQP4-IgGs) are the pathogenic effector of NMOSD. Dysregulated T follicular helper (Tfh) cells have been implicated in loss of B cell tolerance in autoimmune diseases. The contribution of Tfh cells to disease activity and therapeutic potential of targeting these cells in NMOSD remain unclear. Here, we established an autoimmune model of NMOSD by immunizing mice against AQP4 via in vivo electroporation. After AQP4 immunization, mice displayed AQP4 autoantibodies in blood circulation, blood-brain barrier disruption, and IgG infiltration in spinal cord parenchyma. Moreover, AQP4 immunization induced motor impairments and NMOSD-like pathologies, including astrocytopathy, demyelination, axonal loss, and microglia activation. These were associated with increased splenic Tfh, Th1, and Th17 cells; memory B cells; and plasma cells. Aqp4-deficient mice did not display motor impairments and NMOSD-like pathologies after AQP4 immunization. Importantly, abrogating ICOS/ICOS-L signaling using anti-ICOS-L antibody depleted Tfh cells and suppressed the response of Th1 and Th17 cells, memory B cells, and plasma cells in AQP4-immunized mice. These findings were associated with ameliorated motor impairments and spinal cord pathologies. This study suggests a role of Tfh cells in the pathophysiology of NMOSD in a mouse model with AQP4 autoimmunity and provides an animal model for investigating the immunological mechanisms underlying AQP4 autoimmunity and developing therapeutic interventions targeting autoimmune reactions in NMOSD.

MicroRNA Regulation of T-Cell Exhaustion in Cutaneous T Cell Lymphoma.

In The Journal of Investigative Dermatology on 1 March 2022 by Han, Z., Estephan, R. J., et al.

Cutaneous T cell lymphoma (CTCL) is characterized by a background of chronic inflammation, where malignant CTCL cells escape immune surveillance. To study how microRNAs (miRs) regulate T-cell exhaustion, we performed miR sequencing analysis, qRT-PCR, and in situ hybridization on 45 primary CTCL samples, three healthy skin samples, and CTCL cell lines, identifying miR-155-5p, miR-130b-3p, and miR-21-3p. Moreover, miR-155-5p, miR-130b-3p, and miR-21-3p positively correlated with immune checkpoint gene expression in lesional skin samples and were enriched in the IL-6/Jak/signal transducer and activator of transcription signaling pathway by gene set enrichment analysis. Further gene sequencing analysis showed decreased mRNA expression of the major negative regulators of Jak/signal transducer and activator of transcription signaling: SOCS, PIAS, and PTPN. Transfection of MyLa and HuT78 cells with anti-miR-155-5p, anti‒miR-21-3p, and anti‒miR-130b revealed a considerable increase in SOCS proteins along with a significant decrease in the levels of activated signal transducer and activator of transcription 3 and immune checkpoint surface protein expression as well as decreased cell proliferation. Downregulation of miR-155, miR-130, and miR-21 in CTCL cell lines decreased CTCL cell growth and facilitated CD8+ T-cell-mediated cytotoxic activity, with concordant production of IFN-γ and CD107a expression. Our results describe the mechanisms of miR-induced T-cell exhaustion, which provide a foundation for developing synthetic anti-miRs to therapeutically target the tumor microenvironment in CTCL.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research
  • Genetics
  • Immunology and Microbiology

Blinatumomab, a bispecific T cell engager (BiTE) antibody targeting CD19 and CD3ε, can redirect T cells toward CD19-positive tumor cells and has been approved to treat relapsed/refractory B-cell acute lymphoblastic leukemia (R/R B-ALL). However, chemotherapeutic regimens can severely reduce T cells' number and cytotoxic function, leading to an inadequate response to blinatumomab treatment in patients. In addition, it was reported that a substantial portion of R/R B-ALL patients failing blinatumomab treatment had the extramedullary disease, indicating the poor ability of blinatumomab in treating extramedullary disease. In this study, we investigated whether the adoptive transfer of ex vivo expanded γ9δ2 T cells could act as the effector of blinatumomab to enhance blinatumomab's antitumor activity against B-cell malignancies in vivo. Repeated infusion of blinatumomab and human γ9δ2 T cells led to more prolonged survival than that of blinatumomab or human γ9δ2 T cells alone in the mice xenografted with Raji cells. Furthermore, adoptive transfer of γ9δ2 T cells reduced tumor mass outside the bone marrow, indicating the potential of γ9δ2 T cells to eradicate the extramedullary disease. Our results suggest that the addition of γ9δ2 T cells to the blinatumomab treatment regimens could be an effective approach to enhancing blinatumomab's therapeutic efficacy. The concept of this strategy may also be applied to other antigen-specific BiTE therapies for other malignancies.

  • FC/FACS
  • Immunology and Microbiology

Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer.

In Signal Transduction and Targeted Therapy on 20 January 2021 by Ding, Z., Li, Q., et al.

Neoantigens are considered to be ultimate target of tumor immunotherapy due to their high tumor specificity and immunogenicity. Dendritic cell (DCs) vaccines based on neoantigens have exciting effects in treatment of some malignant tumors and are a promising therapeutic modality. Lung cancer is a lethal disease with the highest morbidity and mortality rate in the world. Despite the rapid development of targeted therapy and immune checkpoint inhibitors for lung cancer in recent years, their efficacy is still unsatisfactory overall. Therefore, there is an urgent unmet clinical need for lung cancer treatment. Here, we attempted to treat lung cancer using a personalized neoantigen peptide-pulsed autologous DC vaccine and conducted a single-arm, 2 medical centers, pilot study initiated by the investigator (ChiCTR-ONC-16009100, NCT02956551). The patients enrolled were patients with heavily treated metastatic lung cancer. Candidate neoantigens were derived from whole-exome sequencing and RNA sequencing of fresh biopsy tissues as well as bioinformatics analysis. A total of 12 patients were enrolled in this study. A total of 85 vaccine treatments were administered with a median value of 5 doses/person (range: 3-14 doses/person). In total, 12-30 peptide-based neoantigens were selected for each patient. All treatment-related adverse events were grade 1-2 and there were no delays in dosing due to toxic effects. The objective effectiveness rate was 25%; the disease control rate was 75%; the median progression-free survival was 5.5 months and the median overall survival was 7.9 months. This study provides new evidence for neoantigen vaccine therapy and new therapeutic opportunities for lung cancer treatment.

  • Cancer Research
  • Immunology and Microbiology

Tumor-reactive T cell exhaustion prevents the success of immune therapies. Pegilodecakin activates intratumoral CD8+ T cells in mice and induces objective tumor responses in patients. Here we report that pegilodecakin induces hallmarks of CD8+ T cell immunity in cancer patients, including elevation of interferon-γ and GranzymeB, expansion and activation of intratumoral CD8+ T cells, and proliferation and expansion of LAG-3+ PD-1+ CD8+ T cells. On pegilodecakin, newly expanded T cell clones, undetectable at baseline, become 1%-10% of the total T cell repertoire in the blood. Elevation of interleukin-18, expansion of LAG-3+ PD-1+ T cells and novel T cell clones each correlated with objective tumor responses. Combined pegilodecakin with anti-PD-1 increased the expansion of LAG-3+ PD-1+ CD8+ T cells.
Copyright © 2018 Elsevier Inc. All rights reserved.

  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb