Product Citations: 42

1 image found

Mesenchymal stem cells (MSCs) have been proposed to treat osteoarthritis (OA) for many years. However, clinical outcomes have been inconsistent due to biological variation between patients, differences in tissue source and preparation of the MSCs, and type of donor (e.g. allogenic versus autologous). Here, we test the hypothesis that inconsistent clinical outcomes are related to variations in the stemness and senescence of the injected autologous adipose-derived (AD) MSCs.
In the prospective randomized trial, 45 knee OA patients were divided into two groups: Group 1 (n = 22) patients treated with high tibial osteotomy (HTO) alone and Group 2 (n = 23) patients treated with HTO followed by intra-articular injection of autologous AD-MSCs (HTO + AD-MSCs). MRI and X-ray were performed pre-operation and 12 months post-operation. WOMAC and VAS score were collected four times, every 6 months over a 24-month follow-up. We observed the proliferation and stemness of AD-MSCs selected from the 5 patients showing the most improvement and from the 5 patients with the least improvement, and completed further in vitro experiments including beta-galactosidase activity, reactive oxygen species and bioinformatic analysis.
The results showed that patients treated with HTO + AD-MSCs had a significant reduction in knee OA severity as compared to patients treated with HTO alone. Moreover, we discovered that proliferation and colony forming efficiency of AD-MSCs selected from the 5 patients showing the most improvement performed significantly better than cells selected from the 5 patients with the least improvement. AD-MSCs from the patients with the most improvement also had lower amounts of senescent cells and intracellular reactive oxygen species.
Clinical outcomes of autologous AD-MSCs therapy in knee osteoarthritis are correlated with stem cell stemness and senescence. Our study highlights emerging opportunities and trends in precision medicine that could potentially improve autologous MSC-based therapies.
© 2024. The Author(s).

  • Stem Cells and Developmental Biology

cMPL-Based Purification and Depletion of Human Hematopoietic Stem Cells: Implications for Pre-Transplant Conditioning

Preprint on BioRxiv : the Preprint Server for Biology on 28 February 2024 by Araki, D., Hong, S., et al.

The transplantation of gene-modified autologous hematopoietic stem and progenitor cells (HSPCs) offers a promising therapeutic approach for hematological and immunological disorders. However, this strategy is often limited by the toxicities associated with traditional conditioning regimens. Antibody-based conditioning strategies targeting cKIT and CD45 antigens have shown potential in mitigating these toxicities, but their long-term safety and efficacy in clinical settings require further validation. In this study, we investigate the thrombopoietin (TPO) receptor, cMPL, as a novel target for conditioning protocols. We demonstrate that high surface expression of cMPL is a hallmark feature of long-term repopulating hematopoietic stem cells (LT-HSCs) within the adult human CD34+ HSPC subset. Targeting the cMPL receptor facilitates the separation of human LT-HSCs from mature progenitors, a delineation not achievable with cKIT. Leveraging this finding, we developed a cMPL-targeting immunotoxin, demonstrating its ability to selectively deplete host cMPL high LT-HSCs with a favorable safety profile and rapid clearance within 24 hours post-infusion in rhesus macaques. These findings present significant potential to advance our understanding of human hematopoiesis and enhance the therapeutic outcomes of ex vivo autologous HSPC gene therapies. Abstract Figure Graphical abstract

  • Stem Cells and Developmental Biology

Induction of mesenchymal stem cell (MSC) differentiation from iPS cells using MSC medium.

In Dental Materials Journal on 30 January 2024 by Wu, Y., Iwasaki, K., et al.

Mesenchymal stem cells (MSCs) and induced pluripotent stem (iPS) cells have great potential as cell sources for tissue engineering and regenerative medicine. This study aimed to investigate whether iPS cells can be differentiated into MSCs using MSCGM, a commercially available MSC culture system. The cells were characterized by flow cytometry, immunostaining, and gene expression analyses. We also examined their potential to differentiate into osteoblasts and chondrocytes. Our results showed that iPS cells cultured in MSCGM (iPS-MSCGM) exhibited a fibroblast-like morphology and expressed CD73 and CD90 genes, as well as positive markers for CD73, CD90, and CD105. Moreover, iPS-MSCGM cells demonstrated the ability to differentiate into osteoblasts and chondrocytes in vitro. This study demonstrates a new and simple method for inducing the differentiation of iPS cells to MSCs using MSCGM.

  • FC/FACS
  • Homo sapiens (Human)
  • Stem Cells and Developmental Biology

VitroGel-loaded human MenSCs promote endometrial regeneration and fertility restoration.

In Frontiers in Bioengineering and Biotechnology on 23 January 2024 by Wu, M., Wu, S., et al.

Introduction: Intrauterine adhesions (IUA), also known as Asherman's syndrome, is caused by trauma to the pregnant or non-pregnant uterus, which leads to damaged endometrial basal lining and partial or total occlusion of the uterine chambers, resulting in abnormal menstruation, infertility, or recurrent miscarriage. The essence of this syndrome is endometrial fibrosis. And there is no effective treatment for IUA to stimulate endometrial regeneration currently. Recently, menstrual blood-derived stem cells (MenSCs) have been proved to hold therapeutic promise in various diseases, such as myocardial infarction, stroke, diabetes, and liver cirrhosis. Methods: In this study, we examined the effects of MenSCs on the repair of uterine adhesions in a rat model, and more importantly, promoted such therapeutic effects via a xeno-free VitroGel MMP carrier. Results: This combined treatment reduced the expression of inflammatory factors, increased the expression of anti-inflammatory factors, restricted the area of endometrial fibrosis, diminished uterine adhesions, and partially restored fertility, showing stronger effectiveness than each component alone and almost resembling the sham group. Discussion: Our findings suggest a highly promising strategy for IUA treatment.
Copyright © 2024 Wu, Wu, Tan, Xu, Zhang, Sun, Yang, Wang, Duan, Xu and Wei.

The bone marrow microenvironment (BME) drives drug resistance in acute lymphoblastic leukemia (ALL) through leukemic cell interactions with bone marrow (BM) niches, but the underlying mechanisms remain unclear. Here, we show that the interaction between ALL and mesenchymal stem cells (MSCs) through integrin β1 induces an epithelial-mesenchymal transition (EMT)-like program in MSC-adherent ALL cells, resulting in drug resistance and enhanced survival. Moreover, single-cell RNA sequencing analysis of ALL-MSC co-culture identifies a hybrid cluster of MSC-adherent ALL cells expressing both B-ALL and MSC signature genes, orchestrated by a WNT/β-catenin-mediated EMT-like program. Blockade of interaction between β-catenin and CREB binding protein impairs the survival and drug resistance of MSC-adherent ALL cells in vitro and results in a reduction in leukemic burden in vivo. Targeting of this WNT/β-catenin-mediated EMT-like program is a potential therapeutic approach to overcome cell extrinsically acquired drug resistance in ALL.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Cancer Research
View this product on CiteAb