Product Citations: 8

Cancer cells suppress NK activity by actin-driven polarisation of inhibitory ligands at the synapse

Preprint on BioRxiv : the Preprint Server for Biology on 10 February 2025 by Hoffmann, C., Filali, L., et al.

Natural killer (NK) cells engage target cells via the immunological synapse, where inhibitory and activating signals determine whether NK cell cytotoxicity is suppressed or activated. We report that cancer cells can rapidly remodel their actin cytoskeleton upon NK cell engagement, leading to F-actin accumulation at the synapse. This process inhibits NK cell activation as indicated by impaired MTOC and lytic granule polarization. Exploring the underlying mechanism, we found that actin remodelling drives the recruitment of inhibitory ligands, such as HLA-A, -B, and -C, to the synapse. Disrupting HLA interaction with their cognate inhibitory receptors KIRs restored NK cell activation. Using NK cells expressing inhibitory KIR receptors, matched or unmatched to HLA molecules on cancer cells, we show that synaptic F-actin accumulation and matching KIR-HLA interactions jointly suppress NK cell cytotoxicity. Our findings reveal a novel immune evasion strategy in which cancer cells impair NK cell activation by altering synaptic signalling through actin cytoskeleton-driven recruitment of inhibitory signals to the immunological synapse.

  • Cancer Research
  • Cell Biology
  • Neuroscience

Orthogonal inducible control of Cas13 circuits enables programmable RNA regulation in mammalian cells.

In Nature Communications on 21 February 2024 by Ding, Y., Tous, C., et al.

RNA plays an indispensable role in mammalian cell functions. Cas13, a class of RNA-guided ribonuclease, is a flexible tool for modifying and regulating coding and non-coding RNAs, with enormous potential for creating new cell functions. However, the lack of control over Cas13 activity has limited its cell engineering capability. Here, we present the CRISTAL (Control of RNA with Inducible SpliT CAs13 Orthologs and Exogenous Ligands) platform. CRISTAL is powered by a collection (10 total) of orthogonal split inducible Cas13 effectors that can be turned ON or OFF via small molecules in multiple cell types, providing precise temporal control. Also, we engineer Cas13 logic circuits that can respond to endogenous signaling and exogenous small molecule inputs. Furthermore, the orthogonality, low leakiness, and high dynamic range of our inducible Cas13d and Cas13b enable the design and construction of a robust incoherent feedforward loop, leading to near-perfect and tunable adaptation response. Finally, using our inducible Cas13 effectors, we achieve simultaneous multiplexed control of multiple genes in vitro and in mice. Together, our CRISTAL design represents a powerful platform for precisely regulating RNA dynamics to advance cell engineering and elucidate RNA biology.
© 2024. The Author(s).

  • FC/FACS
  • Homo sapiens (Human)
  • Genetics

Orthogonal inducible control of Cas13 circuits enables programmable RNA regulation in mammalian cells

Preprint on BioRxiv : the Preprint Server for Biology on 20 March 2023 by Ding, Y., Tous, C., et al.

SUMMARY RNA plays an indispensable role in mammalian cell functions. Cas13, a class of RNA-guided ribonuclease, is a flexible tool for modifying and regulating coding and non-coding RNAs, with enormous potential for creating new cell functions. However, the lack of control over Cas13 activity has limited its cell engineering capability. Here, we present the CRISTAL ( C ontrol of R NA with Inducible S pli T C A s13 Orthologs and Exogenous L igands) platform. CRISTAL is powered by a collection (10 total) of orthogonal split inducible Cas13s that can be turned ON or OFF via small molecules in multiple cell types, providing precise temporal control. Also, we engineered Cas13 logic circuits that can respond to endogenous signaling and exogenous small molecule inputs. Furthermore, the orthogonality, low leakiness, and high dynamic range of our inducible Cas13d and Cas13b enable the design and construction of a robust incoherent feedforward loop, leading to near-perfect and tunable adaptation response. Finally, using our inducible Cas13s, we achieve simultaneous multiplexed control of multiple genes in vitro and in mice. Together, our CRISTAL design represents a powerful platform for precisely regulating RNA dynamics to advance cell engineering and elucidate RNA biology.

  • FC/FACS
  • Homo sapiens (Human)
  • Genetics

Human fetal progenitor tenocytes (hFPT) produced in defined cell bank systems have recently been characterized and qualified as potential therapeutic cell sources in tendon regenerative medicine. In view of further developing the manufacture processes of such cell-based active pharmaceutical ingredients (API), the effects of hypoxic in vitro culture expansion on key cellular characteristics or process parameters were evaluated. To this end, multiple aspects were comparatively assessed in normoxic incubation (i.e., 5% CO2 and 21% O2, standard conditions) or in hypoxic incubation (i.e., 5% CO2 and 2% O2, optimized conditions). Experimentally investigated parameters and endpoints included cellular proliferation, cellular morphology and size distribution, cell surface marker panels, cell susceptibility toward adipogenic and osteogenic induction, while relative protein expression levels were analyzed by quantitative mass spectrometry. The results outlined conserved critical cellular characteristics (i.e., cell surface marker panels, cellular phenotype under chemical induction) and modified key cellular parameters (i.e., cell size distribution, endpoint cell yields, matrix protein contents) potentially procuring tangible benefits for next-generation cell manufacturing workflows. Specific proteomic analyses further shed some light on the cellular effects of hypoxia, potentially orienting further hFPT processing for cell-based, cell-free API manufacture. Overall, this study indicated that hypoxic incubation impacts specific hFPT key properties while preserving critical quality attributes (i.e., as compared to normoxic incubation), enabling efficient manufacture of tenocyte-based APIs for homologous standardized transplant products.

  • FC/FACS
  • Homo sapiens (Human)
  • Cell Biology

Multiplex T-cell Stimulation Assay Utilizing a T-cell Activation Reporter-based Detection System.

In Bio-protocol on 20 January 2021 by Landry, L. G., Mann, S. E., et al.

Immune tolerance and response are both largely driven by the interactions between the major histocompatibility complex (MHC) expressed by antigen presenting cells (APCs), T-cell receptors (TCRs) on T-cells, and their cognate antigens. Disordered interactions cause the pathogenesis of autoimmune diseases such as type 1 diabetes. Therefore, the identification of antigenic epitopes of autoreactive T-cells leads to important advances in therapeutics and biomarkers. Next-generation sequencing methods allow for the rapid identification of thousands of TCR clonotypes from single T-cells, and thus there is a need to determine cognate antigens for identified TCRs. This protocol describes a reporter system of T-cell activation where the fluorescent reporter protein ZsGreen-1 is driven by nuclear factor of activated T-cells (NFAT) signaling and read by flow cytometry. Reporter T-cells also constitutively express additional pairs of fluorescent proteins as identifiers, allowing for multiplexing of up to eight different reporter T-cell lines simultaneously, each expressing a different TCR of interest and distinguishable by flow cytometry. Once TCR expression cell lines are made they can be used indefinitely for making new T-cell lines with just one transduction step. This multiplexing system permits screening numbers of TCR-antigen interactions that would otherwise be impractical, can be used in a variety of contexts (i.e., screening individual antigens or antigen pools), and can be applied to study any T-cell-MHC-antigen trimolecular interaction.
Copyright © 2021 The Authors; exclusive licensee Bio-protocol LLC.

  • Immunology and Microbiology
View this product on CiteAb