Product Citations: 8

Chimeric anti-GPC3 sFv-CD3ε receptor-modified T cells with IL7 co-expression for the treatment of solid tumors.

In Molecular Therapy Oncolytics on 16 June 2022 by Sun, Y., Dong, Y., et al.

Chimeric antigen receptor (CAR) T cells targeting glypican-3 (GPC3) demonstrated early signs of therapeutic efficacy to hepatocellular carcinoma patients with a risk of cytokine release syndrome (CRS). Several adoptive cell therapies (ACTs) with T cells using the natural T cell receptor (TCR) signaling induced more efficient antitumor function and reduced cytokine production relative to CARs in solid tumors. To improve the efficacy and safety of GPC3-targeted ACTs, T cells were modified with anti-GPC3 single-chain fragment variable(sFv) linked to CD3ε, which could be incorporated into the entire TCR/CD3 complex to form chimeric sFv-CD3ε receptor (sFv-ε). sFv-ε T cells showed competitive antitumor activity and lower cytokine release compared to 28ζ or BBζ CAR T cells, which may be ascribed to moderately less activated Ca2+-calcineurin-NFAT signaling pathway. We further generated murine sFv-ε T cells with interleukin-7 co-expression (7sFv-ε) to promote T cell survival and to mobilize the endogenous immune system. In immunocompetent mouse models, 7sFv-ε T cells showed superior persistence, antitumor efficacy, and immunological memory while preserving the low production of cytokines associated with CRS compared to conventional sFv-ε T cells. These results indicate that GPC3-specific 7sFv-ε T cells could serve as a promising therapeutic strategy for solid tumors.
© 2022 The Author(s).

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research
  • Immunology and Microbiology

Alternative strategies are needed for patients with B-cell malignancy relapsing after CD19-targeted immunotherapy. Here, cell surface proteomics revealed CD72 as an optimal target for poor-prognosis KMT2A/MLL1-rearranged (MLLr) B-cell acute lymphoblastic leukemia (B-ALL), which we further found to be expressed in other B-cell malignancies. Using a recently described, fully in vitro system, we selected synthetic CD72-specific nanobodies, incorporated them into chimeric antigen receptors (CAR), and demonstrated robust activity against B-cell malignancy models, including CD19 loss. Taking advantage of the role of CD72 in inhibiting B-cell receptor signaling, we found that SHIP1 inhibition increased CD72 surface density. We establish that CD72-nanobody CAR-T cells are a promising therapy for MLLr B-ALL. SIGNIFICANCE: Patients with MLLr B-ALL have poor prognoses despite recent immunotherapy advances. Here, surface proteomics identifies CD72 as being enriched on MLLr B-ALL but also widely expressed across B-cell cancers. We show that a recently described, fully in vitro nanobody platform generates binders highly active in CAR-T cells and demonstrate its broad applicability for immunotherapy development.This article is highlighted in the In This Issue feature, p. 1861.
©2021 American Association for Cancer Research.

  • FC/FACS
  • Cancer Research
  • Immunology and Microbiology

A Rational Designed Novel Bispecific Antibody for the Treatment of GBM.

In Biomedicines on 3 June 2021 by Sun, R., Zhou, Y., et al.

Epidermal growth factor receptor variant III (EGFRvIII) is highly and specifically expressed in a subset of lethal glioblastoma (GBM), making the receptor a unique therapeutic target for GBM. Recently, bispecific antibodies (BsAbs) have shown exciting clinical benefits in cancer immunotherapy. Here, we report remarkable results for GBM treatment with a BsAb constructed by the "BAPTS" method. The BsAb was characterized through LC/MS, SEC-HPLC, and SPR. Furthermore, the BsAb was evaluated in vitro for bioactivities through FACS, antigen-dependent T-cell-mediated cytotoxicity, and a cytokine secretion assay, as well as in vivo for antitumor activity and pharmacokinetic (PK) parameters through immunodeficient NOD/SCID and BALB/c mouse models. The results indicated that the EGFRvIII-BsAb eliminated EGFRvIII-positive GBM cells by recruiting and stimulating effector T cells secreting cytotoxic cytokines that killed GBM cells in vitro. The results demonstrated the antitumor potential and long circulation time of EGFRvIII-BsAb in NOD/SCID mice bearing de2-7 subcutaneously heterotopic transplantation tumors and BALB/c mice. In conclusion, our experiments in both in vitro and in vivo have shown the remarkable antitumor activities of EGFRvIII-BsAb, highlighting its potential in clinical applications for the treatment of GBM. Additional merits, including a long circulation time and low immunogenicity, have also made the novel BsAb a promising therapeutic candidate.

5-FU-Induced Upregulation of Exosomal PD-L1 Causes Immunosuppression in Advanced Gastric Cancer Patients.

In Frontiers in Oncology on 12 May 2020 by Zhang, M., Fan, Y., et al.

Although the cytotoxic chemotherapeutic agent 5-fluorouracil (5-FU) is generally considered to directly kill cancer cells and exert immunostimulatory effects in advanced gastric cancer, accumulating evidence indicates that it upregulates the expression of PD-L1, a representative immune checkpoint blockade molecule involved in negative regulation of the immune response. It was reported that exosomes could transfer functional PD-L1 locally and distantly to suppress the antitumor immune response. However, whether 5-FU alters the expression of exosomal PD-L1 and induces immunosuppression in gastric cancer remains unclear. Herein, we found that 5-FU increased gastric cancer-derived exosomal PD-L1. Importantly, compared with baseline levels, circulating exosomal PD-L1 was significantly upregulated in 21 stage III-IV gastric cancer patients after two, four, and six repeated cycles of fluoropyrimidine treatment (P = 0.009, P = 0.047, and P = 0.023, respectively), accompanied by decreased amounts of IFN-γ, TNF-α, IL-2, IL-6, and GM-CSF (P = 0.014, P = 0.004, P = 0.009, P = 0.031, and P = 0.014, respectively). Additionally, circulating exosomal PD-L1 was increased more significantly in clinical non-responders compared with responders (P = 0.018). Furthermore, exosomal PD-L1 induced apoptosis in Jurkat T cells and inhibited T cell activation in PBMCs, which could be partly reversed by nivolumab. These results suggested that 5-FU-induced upregulation of exosomal PD-L1 causes systemic immunosuppression in advanced gastric cancer following multiple cycles of chemotherapy, especially after two cycles.
Copyright © 2020 Zhang, Fan, Che, Hou, Zhang, Li, Wen, Wang, Cheng, Liu and Qu.

  • Homo sapiens (Human)
  • Cancer Research

Aspergillus fumigatus enhances human NK cell activity by regulating M1 macrophage polarization.

In Molecular Medicine Reports on 1 August 2019 by Zhang, X., He, D., et al.

The progression of disease caused by fungal infection is closely associated with the human immune system. Macrophages and natural killer cells (NK cells) are two important types of innate immune cells that serve an important role in anti‑infection immunity. There has been limited research into the interactions between fungi and macrophages. In the present in vitro study, reverse transcription‑quantitative PCR, ELISA and flow cytometry were performed to reveal that the interaction between macrophages and NK cells, regulated by Aspergillus fumigatus conidia, induced macrophages to polarize into M1 macrophages by secreting large quantities of tumor necrosis factor‑α, interleukin‑18 and Galectin‑9. In addition, when NK cells were co‑cultured with the conidia of A. fumigatus‑stimulated M1 macrophages, they exhibited increased activation levels and secretion of interferon‑γ (IFN‑γ). It was further demonstrated via antibody neutralization and gene silencing experiments that galectin‑9 served an important role in the interaction between macrophages and NK cells regulated by A. fumigatus. In conclusion, it was demonstrated that A. fumigatus induced the polarization of macrophages into M1 macrophages by secreting Galectin‑9, which then promoted NK cell activity and IFN‑γ secretion. The results provided improved understanding of the role of innate immune cells in invasive fungal infections. The present study also provided novel insight into the study of macrophages and NK cells in inflammatory infections caused by A. fumigatus and potential strategies to control the progression of inflammation.

  • FC/FACS
  • Homo sapiens (Human)
  • Biochemistry and Molecular biology
  • Immunology and Microbiology
View this product on CiteAb