Product Citations: 14

A Digital Microfluidic Platform for the Microscale Production of Functional Immune Cell Therapies

Preprint on BioRxiv : the Preprint Server for Biology on 8 September 2024 by Little, S. R., Rahbari, N., et al.

Genetically engineering human immune cells has been shown to be an effective approach for developing novel cellular therapies to treat a wide range of diseases. To expand the scope of these cellular therapies while solving persistent challenges, extensive research and development is still required. Electroporation has recently emerged as one of the most popular techniques for inserting biological payloads into human immune cells to perform genetic engineering. However, several recent studies have reported that electroporation can negatively impact cell functionality. Additionally, the requirement to use large amounts of cells and expensive payloads to achieve efficient delivery can drive up the costs of development efforts. Here we use a digital microfluidic enabled electroporation system (referred to as triDrop) and compare them against two state-of-the-art commercially available systems for the engineering of human T cells. We describe the ability to use triDrop for highly viable, highly efficient transfection while using substantially fewer cells and payload. Subsequently, we perform transcriptomic analysis on cells engineered with each of the three systems and show that electroporation with triDrop lead to less dysregulation of several functionally relevant pathways. Finally, in a direct comparison of immunotherapeutic functionality, we show that T cells engineered with triDrop have an improved ability to mount an immune response when presented with tumor cells. These results show that the triDrop platform is uniquely suited to produce functionally engineered immune cells while also reducing the costs of cell engineering compared to other commercially available systems.

  • Immunology and Microbiology

Bone marrow aspirate concentrate (BMAC) and adipose-derived stromal vascular fraction (ADSVF) are the most marketed stem cell therapies to treat a variety of conditions in the general population and elite athletes. Both tissues have been used interchangeably clinically even though their detailed composition, heterogeneity, and mechanisms of action have neither been rigorously inventoried nor compared. This lack of information has prevented investigations into ideal dosages and has facilitated anecdata and misinformation. Here, we analyzed single-cell transcriptomes, proteomes, and flow cytometry profiles from paired clinical-grade BMAC and ADSVF. This comparative transcriptional atlas challenges the prevalent notion that there is one therapeutic cell type present in both tissues. We also provide data of surface markers that may enable isolation and investigation of cell (sub)populations. Furthermore, the proteome atlas highlights intertissue and interpatient heterogeneity of injected proteins with potentially regenerative or immunomodulatory capacities. An interactive webtool is available online.

  • Biochemistry and Molecular biology

Human skin CD141+ dendritic cells regulate cutaneous immunity via the neuropeptide urocortin 2.

In IScience on 20 October 2023 by Lui, P. P., Ainali, C., et al.

Skin immune homeostasis is a multi-faceted process where dermal dendritic cells (DDCs) are key in orchestrating responses to environmental stressors. We have previously identified CD141+CD14+ DDCs as a skin-resident immunoregulatory population that is vitamin-D3 (VitD3) inducible from monocyte-derived DCs (moDCs), termed CD141hi VitD3 moDCs. We demonstrate that CD141+ DDCs and CD141hi VitD3 moDCs share key immunological features including cell surface markers, reduced T cell stimulation, IL-10 production, and a common transcriptomic signature. Bioinformatic analysis identified the neuroactive ligand receptor pathway and the neuropeptide, urocortin 2 (UCN2), as a potential immunoregulatory candidate molecule. Incubation with VitD3 upregulated UCN2 in CD141+ DCs and UVB irradiation induced UCN2 in CD141+ DCs in healthy skin in vivo. Notably, CD141+ DDC generation of suppressive Tregs was dependent upon the UCN2 pathway as in vivo administration of UCN2 reversed skin inflammation in humanized mice. We propose the neuropeptide UCN2 as a novel skin DC-derived immunoregulatory mediator with a potential role in UVB and VitD3-dependent skin immune homeostasis.
© 2023 The Authors.

  • Immunology and Microbiology

Pancreatic cancer is characterized by late detection, frequent drug resistance, and a highly metastatic nature, leading to poor prognosis. Antibody-based immunotherapy showed limited success for pancreatic cancer, partly owing to the low delivery rate of the drug into the tumor. Herein, we describe a poly(lactic-co-glycolic acid;PLGA)-based siRNA nanoparticle targeting PD-L1 (siPD-L1@PLGA). The siPD-L1@PLGA exhibited efficient knockdown of PD-L1 in cancer cells, without affecting the cell viability up to 6 mg/mL. Further, 99.2% of PDAC cells uptake the nanoparticle and successfully blocked the IFN-gamma-mediated PD-L1 induction. Consistently, the siPD-L1@PLGA sensitized cancer cells to antigen-specific immune cells, as exemplified by Ovalbumin-targeting T cells. To evaluate its efficacy in vivo, we adopted a pancreatic PDX model in humanized mice, generated by grafting CD34+ hematopoeitic stem cells onto NSG mice. The siPD-L1@PLGA significantly suppressed pancreatic tumor growth in this model with upregulated IFN-gamma positive CD8 T cells, leading to more apoptotic tumor cells. Multiplex immunofluorescence analysis exhibited comparable immune cell compositions in control and siPD-L1@PLGA-treated tumors. However, we found higher Granzyme B expression in the siPD-L1@PLGA-treated tumors, suggesting higher activity of NK or cytotoxic T cells. Based on these results, we propose the application of siPD-L1@PLGA as an immunotherapeutic agent for pancreatic cancer.

  • FC/FACS
  • Cancer Research
  • Cell Biology
  • Genetics
  • Immunology and Microbiology

Functional characterization of the immunomodulatory properties of human urine-derived stem cells.

In Translational Andrology and Urology on 1 September 2021 by Wu, R., Soland, M., et al.

Urine-derived stem cells (USCs) have been widely researched as a novel cell source for stem cell therapy, but their immunomodulatory characteristics remain to be investigated. This study aimed to characterize the immunomodulatory properties of human USCs.
Human USCs were isolated from fresh voiding urine samples from healthy male donors and expanded. Their cell surface markers were characterized by flow cytometry analysis and the telomerase activities for several USCs clones were determined. The immunosuppressive potential of USCs was evaluated by the performing the mixed lymphocyte reaction (MLR) [co-culture with peripheral blood mononuclear cells (PBMNCs)] and natural killer cells (NK) cytotoxicity assay. USCs cytokines release profile was determined by using human cytokine proteome array.
USCs exhibited high cell surface expression of embryonic/mesenchymal stem cells (MSCs) markers CD29, CD44, CD54, CD73, CD90, CD146, and CD166, while lacked expression of hematopoietic stem cell markers CD11, CD14, CD19, CD31, CD34, CD45, B cell marker CD79, and co-stimulatory factors CD80 and CD86, thus, exhibiting the phenotype of MSCs. MLR indicated that USCs significantly inhibited the proliferation of PBMNCs, as compared to that of the human smooth muscle cells (SMCs). In cell cytotoxicity assays, NK cells displayed less cytotoxicity against USCs than against bone marrow mesenchymal stem cells (BMSCs) and SMCs. Furthermore, upon PBMNCs stimulation, USCs secreted higher levels of immunomodulatory cytokines, including IL-6, IL-8, MCP-1, RANTES, GROα, and GM-CSF, compared to those of BMSCs, especially when directly contact mix-culture with PBMNCs.
USCs secreted immunoregulatory cytokines and possessed immunomodulatory properties, comparable to those of BMSCs.
2021 Translational Andrology and Urology. All rights reserved.

  • Homo sapiens (Human)
  • Stem Cells and Developmental Biology
View this product on CiteAb