Product Citations: 6

Monocyte-derived macrophages help maintain tissue homeostasis and defend the organism against pathogens. In tumors, recent studies have uncovered complex macrophage populations, including tumor-associated macrophages, which support tumorigenesis through cancer hallmarks such as immunosuppression, angiogenesis, or matrix remodeling. In the case of chronic lymphocytic leukemia, these macrophages are known as nurse-like cells (NLCs) and they protect leukemic cells from spontaneous apoptosis, contributing to their chemoresistance. We propose an agent-based model of monocyte differentiation into NLCs upon contact with leukemic B cells in vitro. We performed patient-specific model optimization using cultures of peripheral blood mononuclear cells from patients. Using our model, we were able to reproduce the temporal survival dynamics of cancer cells in a patient-specific manner and to identify patient groups related to distinct macrophage phenotypes. Our results show a potentially important role of phagocytosis in the polarization process of NLCs and in promoting cancer cells' enhanced survival.
© 2023 The Authors.

  • Homo sapiens (Human)
  • Cancer Research

A role for endothelial alpha-mannosidase MAN1C1 in radiation-induced immune cell recruitment.

In IScience on 22 December 2022 by Ladaigue, S., Lefranc, A. C., et al.

Radiation therapy damages tumors and normal tissues, probably in part through the recruitment of immune cells. Endothelial high-mannose N-glycans are, in particular, involved in monocyte-endothelium interactions. Trimmed by the class I α-mannosidases, these structures are quite rare in normal conditions. Here, we show that the expression of the endothelial α-mannosidase MAN1C1 protein decreases after irradiation. We modeled two crucial steps in monocyte recruitment by developing in vitro real-time imaging models. Inhibition of MAN1C1 expression by siRNA gene silencing increases the abundance of high-mannose N-glycans, improves the adhesion of monocytes on endothelial cells in flow conditions and, in contrast, decreases radiation-induced transendothelial migration of monocytes. Consistently, overexpression of MAN1C1 in endothelial cells using lentiviral vectors decreases the abundance of high-mannose N-glycans and monocyte adhesion and enhances transendothelial migration of monocytes. Hence, we propose a role for endothelial MAN1C1 in the recruitment of monocytes, particularly in the adhesion step to the endothelium.
© 2022 The Author(s).

  • Immunology and Microbiology

Post SARS-CoV-2 cell mediated Immune profiles; Case studies

Preprint on MedRxiv : the Preprint Server for Health Sciences on 5 July 2022 by Singh, R., Ravichandiran, V., et al.

Cell-mediated immunity (CMI), which includes T-cells (both T helper and cytotoxic), is critical for effective antiviral defenses against coronavirus disease-2019 (COVID-19). To better understand the immunological characteristics of CD markers on T-cells in post-COVID-19 patients, we investigated the expression of differential CD markers in the patient groups in this study. Flow cytometry was used to quantify total lymphocyte count and assess the levels of expression of CD markers in the samples. The percentage of Lymphocytes decreased significantly in the post-SARS-COV-2 patients in comparison to normal subjects, which is usually happening in any viral infection. In contrast to that, expression of CD8 was increased in the patient group having long SARS-COV-2 infection with comorbid complications with respect to the normal individuals and long SARS-COV-2 infection without comorbid complications. This data revealed that the cellular immunological responses corroborated with an earlier report of COVID-19 infection were mediated by CD8 upregulation and cytotoxic T lymphocyte hyperactivation.

  • COVID-19
  • Immunology and Microbiology

Umbilical Cord Blood and iPSC-Derived Natural Killer Cells Demonstrate Key Differences in Cytotoxic Activity and KIR Profiles.

In Frontiers in Immunology on 13 November 2020 by Goldenson, B. H., Zhu, H., et al.

Natural killer (NK) cells derived or isolated from different sources have been gaining in importance for cancer therapies. In this study, we evaluate and compare key characteristics between NK cells derived or isolated from umbilical cord blood, umbilical cord blood hematopoietic stem/progenitor cells, peripheral blood, and induced pluripotent stem cells (iPSCs). Specifically, we find CD56+ NK cells isolated and expanded directly from umbilical cord blood (UCB56) and NK cells derived from CD34+ hematopoietic stem/progenitors in umbilical cord blood (UCB34) differ in their expression of markers associated with differentiation including CD16, CD2, and killer Ig-like receptors (KIRs). UCB56-NK cells also displayed a more potent cytotoxicity compared to UCB34-NK cells. NK cells derived from iPSCs (iPSC-NK cells) were found to have variable KIR expression, with certain iPSC-NK cell populations expressing high levels of KIRs and others not expressing KIRs. Notably, KIR expression on UCB56 and iPSC-NK cells had limited effect on cytotoxic activity when stimulated by tumor target cells that express high levels of cognate HLA class I, suggesting that in vitro differentiation and expansion may override the KIR-HLA class I mediated inhibition when used across HLA barriers. Together our results give a better understanding of the cell surface receptor, transcriptional, and functional differences between NK cells present in umbilical cord blood and hematopoietic progenitor-derived NK cells which may prove important in selecting the most active NK cell populations for treatment of cancer or other therapies.
Copyright © 2020 Goldenson, Zhu, Wang, Heragu, Bernareggi, Ruiz-Cisneros, Bahena, Ask, Hoel, Malmberg and Kaufman.

  • FC/FACS
  • Homo sapiens (Human)
  • Cardiovascular biology
  • Immunology and Microbiology
  • Stem Cells and Developmental Biology

Cytokine-inducible SH2-containing protein (CIS; encoded by the gene CISH) is a key negative regulator of interleukin-15 (IL-15) signaling in natural killer (NK) cells. Here, we develop human CISH-knockout (CISH-/-) NK cells using an induced pluripotent stem cell-derived NK cell (iPSC-NK cell) platform. CISH-/- iPSC-NK cells demonstrate increased IL-15-mediated JAK-STAT signaling activity. Consequently, CISH-/- iPSC-NK cells exhibit improved expansion and increased cytotoxic activity against multiple tumor cell lines when maintained at low cytokine concentrations. CISH-/- iPSC-NK cells display significantly increased in vivo persistence and inhibition of tumor progression in a leukemia xenograft model. Mechanistically, CISH-/- iPSC-NK cells display improved metabolic fitness characterized by increased basal glycolysis, glycolytic capacity, maximal mitochondrial respiration, ATP-linked respiration, and spare respiration capacity mediated by mammalian target of rapamycin (mTOR) signaling that directly contributes to enhanced NK cell function. Together, these studies demonstrate that CIS plays a key role to regulate human NK cell metabolic activity and thereby modulate anti-tumor activity.
Copyright © 2020 Elsevier Inc. All rights reserved.

  • Biochemistry and Molecular biology
  • Cancer Research
  • Cell Biology
  • Stem Cells and Developmental Biology
View this product on CiteAb