Product Citations: 7

The DNA damage response (DDR) and the blood-tumor barrier (BTB) restrict chemotherapeutic success for primary brain tumors like glioblastomas (GBMs). Coherently, GBMs almost invariably relapse with fatal outcomes. Here, we show that the interaction of GBM and myeloid cells simultaneously induces chemoresistance on the genetic and vascular levels by activating GP130 receptor signaling, which can be addressed therapeutically. We provide data from transcriptomic and immunohistochemical screens with human brain material and pharmacological experiments with a humanized organotypic GBM model, proteomics, transcriptomics, and cell-based assays and report that nanomolar concentrations of the signaling peptide humanin promote temozolomide (TMZ) resistance through DDR activation. GBM mouse models recapitulating intratumoral humanin release show accelerated BTB formation. GP130 blockade attenuates both DDR activity and BTB formation, resulting in improved preclinical chemotherapeutic efficacy. Altogether, we describe an overarching mechanism for TMZ resistance and outline a translatable strategy with predictive markers to improve chemotherapy for GBMs.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Cancer Research

The Immunomodulatory Effect of Triptolide on Mesenchymal Stromal Cells.

In Frontiers in Immunology on 7 September 2021 by He, H., Takahashi, A., et al.

Mesenchymal stromal cells (MSCs) are known to have immunosuppressive ability and have been used in clinical treatment of acute graft-versus-host disease, one of severe complications of the hematopoietic stem cell transplantation. However, MSCs are activated to suppress the immune system only after encountering an inflammatory stimulation. Thus, it will be ideal if MSCs are primed to be activated and ready to suppress the immune reaction before being administered. Triptolide (TPL) is a diterpene triepoxide purified from a Chinese herb-Tripterygium wilfordii Hook.f. It has been shown to possess anti-inflammatory and immunosuppressive properties in vitro. In this study, we aimed to use TPL to prime umbilical cord-derived MSCs (TPL-primed UC-MSCs) to enter a stronger immunosuppressive status. UC-MSCs were primed with TPL, which was washed out thoroughly, and the TPL-primed UC-MSCs were resuspended in fresh medium. Although TPL inhibited the proliferation of UC-MSCs, 0.01 μM TPL for 24 h was tolerable. The surface markers of TPL-primed UC-MSCs were identical to those of non-primed UC-MSCs. TPL-primed UC-MSCs exhibited stronger anti-proliferative effect for activated CD4+ and CD8+ T cells in the allogeneic mixed lymphocyte reaction assay than the non-primed UC-MSCs. TPL-primed UC-MSCs promoted the expression of IDO-1 in the presence of IFN-γ, but TPL alone was not sufficient. Furthermore, TPL-primed UC-MSCs showed increased expression of PD-L1. Conclusively, upregulation of IDO-1 in the presence of IFN-γ and induction of PD-L1 enhances the immunosuppressive potency of TPL-primed UC-MSCs on the proliferation of activated T cells. Thus, TPL- primed MSCs may provide a novel immunosuppressive cell therapy.
Copyright © 2021 He, Takahashi, Mukai, Hori, Narita, Tojo, Yang and Nagamura-Inoue.

  • FC/FACS
  • Immunology and Microbiology

The primary mechanisms supporting immunoregulatory polarization of myeloid cells upon infiltration into tumors remain largely unexplored. Elucidation of these signals could enable better strategies to restore protective anti-tumor immunity. Here, we investigated the role of the intrinsic activation of the PKR-like endoplasmic reticulum (ER) kinase (PERK) in the immunoinhibitory actions of tumor-associated myeloid-derived suppressor cells (tumor-MDSCs). PERK signaling increased in tumor-MDSCs, and its deletion transformed MDSCs into myeloid cells that activated CD8+ T cell-mediated immunity against cancer. Tumor-MDSCs lacking PERK exhibited disrupted NRF2-driven antioxidant capacity and impaired mitochondrial respiratory homeostasis. Moreover, reduced NRF2 signaling in PERK-deficient MDSCs elicited cytosolic mitochondrial DNA elevation and, consequently, STING-dependent expression of anti-tumor type I interferon. Reactivation of NRF2 signaling, conditional deletion of STING, or blockade of type I interferon receptor I restored the immunoinhibitory potential of PERK-ablated MDSCs. Our findings demonstrate the pivotal role of PERK in tumor-MDSC functionality and unveil strategies to reprogram immunosuppressive myelopoiesis in tumors to boost cancer immunotherapy.
Copyright © 2020 Elsevier Inc. All rights reserved.

  • Cancer Research
  • Immunology and Microbiology

A Autosomal-dominant ELANE mutations are the most common cause of severe congenital neutropenia. Although the majority of congenital neutropenia patients respond to daily granulocyte colony stimulating factor, approximately 15 % do not respond to this cytokine at doses up to 50 μg/kg/day and approximately 15 % of patients will develop myelodysplasia or acute myeloid leukemia. "Maturation arrest," the failure of the marrow myeloid progenitors to form mature neutrophils, is a consistent feature of ELANE associated congenital neutropenia. As mutant neutrophil elastase is the cause of this abnormality, we hypothesized that ELANE associated neutropenia could be treated and "maturation arrest" corrected by a CRISPR/Cas9-sgRNA ribonucleoprotein mediated ELANE knockout. To examine this hypothesis, we used induced pluripotent stem cells from two congenital neutropenia patients and primary hematopoietic stem and progenitor cells from four congenital neutropenia patients harboring ELANE mutations as well as HL60 cells expressing mutant ELANE We observed that granulocytic differentiation of ELANE knockout induced pluripotent stem cells and primary hematopoietic stem and progenitor cells were comparable to healthy individuals. Phagocytic functions, ROS production, and chemotaxis of the ELANE KO (knockout) neutrophils were also normal. Knockdown of ELANE in the mutant ELANE expressing HL60 cells also allowed full maturation and formation of abundant neutrophils. These observations suggest that ex vivo CRISPR/Cas9 RNP based ELANE knockout of patients' primary hematopoietic stem and progenitor cells followed by autologous transplantation may be an alternative therapy for congenital neutropenia.
Copyright© 2020 Ferrata Storti Foundation.

  • Cardiovascular biology
  • Stem Cells and Developmental Biology

Characterization of Human Monocyte Subsets by Whole Blood Flow Cytometry Analysis.

In Journal of Visualized Experiments : JoVE on 17 October 2018 by Marimuthu, R., Francis, H., et al.

Monocytes are key contributors in various inflammatory disorders and alterations to these cells, including their subset proportions and functions, can have pathological significance. An ideal method for examining alterations to monocytes is whole blood flow cytometry as the minimal handling of samples by this method limits artifactual cell activation. However, many different approaches are taken to gate the monocyte subsets leading to inconsistent identification of the subsets between studies. Here we demonstrate a method using whole blood flow cytometry to identify and characterize human monocyte subsets (classical, intermediate, and non-classical). We outline how to prepare the blood samples for flow cytometry, gate the subsets (ensure contaminating cells have been removed), and determine monocyte subset expression of surface markers - in this example M1 and M2 markers. This protocol can be extended to other studies that require a standard gating method for assessing monocyte subset proportions and monocyte subset expression of other functional markers.

  • Cardiovascular biology
View this product on CiteAb