Product Citations: 16

Here, we present a protocol to evaluate the killing capacity and functional profile of human HIV-specific CD8 T cells. We describe steps for culturing peripheral blood mononuclear cells (PBMCs) from patients with HIV on antiretroviral therapy (ART) with HIV peptides ex vivo and quantifying HIV-specific CD8 T cell killing using flow cytometry. We then detail procedures for integrating the established killing assay with intracellular cytokine staining (ICS) and assessing CD8 T cell function. This protocol can provide insights into CD8 T cell-mediated immunity against HIV. For complete details on the use and execution of this protocol, please refer to Mbitikon-Kobo et al.,1 Noto et al.,2 and Gubser et al.3.
Crown Copyright © 2024. Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

GITR activation ex vivo impairs CD8 T cell function in people with HIV on antiretroviral therapy.

In IScience on 17 November 2023 by Gubser, C., Pascoe, R. D., et al.

Glucocorticoid-induced tumor necrosis factor related protein (GITR) is a co-stimulatory immune checkpoint molecule constitutively expressed on regulatory T cells (Tregs) and on activated T conventional cells (Tconv). In blood collected from PWH on suppressive ART, GITR expression was reduced in multiple activated CD4 and CD8 T cell subsets but was increased in Tregs. HIV specific CD8 T cells expressed higher levels of GITR and programmed cell death protein 1 (PD-1) compared to total CD8 T cells. Following stimulation with HIV peptides and GITR-ligand (L), we demonstrated a significant decrease in killing by HIV specific CD8 T cells and an increased exhausted profile. T cell receptor co-stimulation with GITR-L abrogated Treg suppression and induced expansion of CD4 Tconv. We conclude that GITR activation is an additional factor contributing to an impaired HIV immune response in PWH on ART and that GITR agonist antibodies should not be pursued for HIV cure strategies.
© 2023 The Authors.

  • Homo sapiens (Human)
  • Immunology and Microbiology

To evaluate the long-term effect of intra-lymphatic administration of GAD-alum and a booster dose 2.5 years after the first intervention (DIAGNODE Extension study) in patients with recent-onset type 1 diabetes.
DIAGNODE-1: Samples were collected from 12 patients after 30 months who had received 3 injections of 4 μg GAD-alum into a lymph node with one-month interval. DIAGNODE Extension study: First in human, a fourth booster dose of autoantigen (GAD-alum) was given to 3 patients at 31.5 months, who were followed for another 12 months. C-peptide was measured during mixed meal tolerance tests (MMTTs). GADA, IA-2A, GADA subclasses, GAD65-induced cytokines, PBMCs proliferation and T cells markers were analyzed.
After 30-month treatment, efficacy was still seen in 8/12 patients (good responders, GR). Partial remission (IDAA1c < 9) had decreased compared to 15 months, but did not differ from baseline, and HbA1c remained stable. GAD65-specific immune responses induced by the treatment started to wane after 30 months, and most changes observed at 15 months were undetectable. GADA subclasses IgG2, IgG3 and IgG4 were predominant in the GR along with IgG1. A fourth intra-lymphatic GAD-alum dose to three patients after 31.5 months gave no adverse events. In all three patients, C-peptide seemed to increase the first 6 months, and thereafter, C-peptide, HbA1c, insulin requirement and IDAA1c remained stable.
The effect of intra-lymphatic injections of GAD-alum had decreased after 30 months. Good responders showed a specific immune response. Administration of a fourth booster dose after 31.5 months was safe, and there was no decline in C-peptide observed during the 12-month follow-up.
© 2022. The Author(s).

Mucosa-Associated Invariant T Cell Hypersensitivity to Staphylococcus aureus Leukocidin ED and Its Modulation by Activation.

In The Journal of Immunology on 1 March 2022 by Boulouis, C., Leeansyah, E., et al.

Mucosa-associated invariant T (MAIT) cells recognize bacterial riboflavin metabolite Ags presented by MHC class Ib-related protein (MR1) and play important roles in immune control of microbes that synthesize riboflavin. This includes the pathobiont Staphylococcus aureus, which can also express a range of virulence factors, including the secreted toxin leukocidin ED (LukED). In this study, we found that human MAIT cells are hypersensitive to LukED-mediated lysis and lost on exposure to the toxin, leaving a T cell population devoid of MAIT cells. The cytolytic effect of LukED on MAIT cells was rapid and occurred at toxin concentrations lower than those required for toxicity against conventional T cells. Furthermore, this coincided with high MAIT cell expression of CCR5, and loss of these cells was efficiently inhibited by the CCR5 inhibitor maraviroc. Interestingly, exposure and preactivation of MAIT cells with IL-12 and IL-18, or activation via TCR triggering, partially protected from LukED toxicity. Furthermore, analysis of NK cells indicated that LukED targeted the mature cytotoxic CD57+ NK cell subset in a CCR5-independent manner. Overall, these results indicate that LukED efficiently eliminates immune cells that can respond rapidly to S. aureus in an innate fashion without the need for clonal expansion, and that MAIT cells are exceptionally vulnerable to this toxin. Thus, the findings support a model where LukED secretion may allow S. aureus to avoid recognition by the rapid cell-mediated responses mediated by MAIT cells and NK cells.
Copyright © 2022 by The American Association of Immunologists, Inc.

  • Immunology and Microbiology

Local SARS-CoV-2 Peptide-Specific Immune Responses in Lungs of Convalescent and Uninfected Human Subjects

Preprint on MedRxiv : the Preprint Server for Health Sciences on 6 September 2021 by Goliwas, K. F., Wood, A. M., et al.

h4>SUMMARY/h4> Multi-specific and long-lasting T cell immunity have been recognized as indicators for long term protection against pathogens including the novel coronavirus SARS-CoV-2, the causative agent of the COVID-19 pandemic. Functional significance of peripheral memory T cells in individuals recovering from COVID-19 (COVID-19 + ) are beginning to be appreciated; but little is known about lung resident memory T cells (lung TRM) in SARS-CoV-2 infection. Here, we utilize a perfused three dimensional (3D) human lung tissue model and identify pre-existing local T cell immunity against SARS-CoV-2 proteins in lung tissues. We report ex vivo maintenance of functional multi-specific IFN-γ secreting lung TRM in COVID-19 + and their induction in lung tissues of vaccinated COVID-19 + . Importantly, we identify SARS-CoV-2 peptide-responding B cells and IgA + plasma cells in lung tissues of COVID-19 + in ex vivo 3D-tissue models. Our study highlights the importance of balanced and local anti-viral immune response in the lung with persistent induction of TRM and IgA + plasma cells for future protection against SARS-CoV-2 infection. Further, our data suggest that inclusion of multiple viral antigens in vaccine approaches may broaden the functional profile of memory T cells to combat the severity of coronavirus infection.

  • COVID-19
  • Immunology and Microbiology
View this product on CiteAb