Product Citations: 4

Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma.

In Nature Medicine on 1 September 2022 by Haradhvala, N. J., Leick, M. B., et al.

Chimeric antigen receptor (CAR)-T cell therapy has revolutionized the treatment of hematologic malignancies. Approximately half of patients with refractory large B cell lymphomas achieve durable responses from CD19-targeting CAR-T treatment; however, failure mechanisms are identified in only a fraction of cases. To gain new insights into the basis of clinical response, we performed single-cell transcriptome sequencing of 105 pretreatment and post-treatment peripheral blood mononuclear cell samples, and infusion products collected from 32 individuals with large B cell lymphoma treated with either of two CD19 CAR-T products: axicabtagene ciloleucel (axi-cel) or tisagenlecleucel (tisa-cel). Expansion of proliferative memory-like CD8 clones was a hallmark of tisa-cel response, whereas axi-cel responders displayed more heterogeneous populations. Elevations in CAR-T regulatory cells among nonresponders to axi-cel were detected, and these populations were capable of suppressing conventional CAR-T cell expansion and driving late relapses in an in vivo model. Our analyses reveal the temporal dynamics of effective responses to CAR-T therapy, the distinct molecular phenotypes of CAR-T cells with differing designs, and the capacity for even small increases in CAR-T regulatory cells to drive relapse.
© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

  • Cancer Research
  • Immunology and Microbiology

The human transcriptome is primarily composed of long non-coding RNAs (lncRNAs), which are key regulatory molecules of multiple biological processes. In the present study, the expression profiles of lncRNAs in the peripheral blood and CD4+ T cells of patients with active rheumatoid arthritis (RA) were determined. Based on the expression profiles, 493 lncRNAs and 374 mRNAs were identified to be differentially expressed in the peripheral blood of active RA patients and healthy donors. Further verification of lncRNAs was performed using reverse transcription-quantitative (RT-q) PCR analysis of peripheral blood from 5 healthy donors and 5 patients with active RA and 14 additional differentially expressed genes were identified. CD4+ T cells in peripheral blood from 12 patients with active RA and 8 healthy donors were isolated using magnetic beads and qPCR was used to assess differentially expressed lncRNAs. The results suggested that 7 lncRNAs were upregulated and 2 were downregulated. The results indicated that these 9 lncRNAs may be involved in the pathogenesis of RA. An increased ratio of Th17: T-regulatory (Treg) cells was also observed. It may be hypothesized that LncRNAs serve important roles in the differentiation of CD4+ T cells. Receiver operating characteristic curve analysis suggested that these 9 lncRNAs are of potential clinical diagnostic value for RA. Pearson correlation analysis indicated that the correlation coefficient between Ensembl transcript (ENST)00000569543 and complement C4 was 0.623 (P<0.05), and that between ENST00000420096 and anti-cyclic citrullinated peptide antibody or disease activity evaluation score, the correlation coefficient was 0.662 and 0.605, respectively (P<0.05 for each). In conclusion, the results of the present study suggest a possible role of lncRNAs in the differentiation of CD4+ T cells and the pathogenesis of RA, as well as the potential value as diagnostic biomarkers for active RA.
Copyright: © Li et al.

  • FC/FACS
  • Homo sapiens (Human)
  • Cardiovascular biology
  • Genetics
  • Immunology and Microbiology

A validated single-cell-based strategy to identify diagnostic and therapeutic targets in complex diseases.

In Genome Medicine on 30 July 2019 by Gawel, D. R., Serra-Musach, J., et al.

Genomic medicine has paved the way for identifying biomarkers and therapeutically actionable targets for complex diseases, but is complicated by the involvement of thousands of variably expressed genes across multiple cell types. Single-cell RNA-sequencing study (scRNA-seq) allows the characterization of such complex changes in whole organs.
The study is based on applying network tools to organize and analyze scRNA-seq data from a mouse model of arthritis and human rheumatoid arthritis, in order to find diagnostic biomarkers and therapeutic targets. Diagnostic validation studies were performed using expression profiling data and potential protein biomarkers from prospective clinical studies of 13 diseases. A candidate drug was examined by a treatment study of a mouse model of arthritis, using phenotypic, immunohistochemical, and cellular analyses as read-outs.
We performed the first systematic analysis of pathways, potential biomarkers, and drug targets in scRNA-seq data from a complex disease, starting with inflamed joints and lymph nodes from a mouse model of arthritis. We found the involvement of hundreds of pathways, biomarkers, and drug targets that differed greatly between cell types. Analyses of scRNA-seq and GWAS data from human rheumatoid arthritis (RA) supported a similar dispersion of pathogenic mechanisms in different cell types. Thus, systems-level approaches to prioritize biomarkers and drugs are needed. Here, we present a prioritization strategy that is based on constructing network models of disease-associated cell types and interactions using scRNA-seq data from our mouse model of arthritis, as well as human RA, which we term multicellular disease models (MCDMs). We find that the network centrality of MCDM cell types correlates with the enrichment of genes harboring genetic variants associated with RA and thus could potentially be used to prioritize cell types and genes for diagnostics and therapeutics. We validated this hypothesis in a large-scale study of patients with 13 different autoimmune, allergic, infectious, malignant, endocrine, metabolic, and cardiovascular diseases, as well as a therapeutic study of the mouse arthritis model.
Overall, our results support that our strategy has the potential to help prioritize diagnostic and therapeutic targets in human disease.

  • FC/FACS
  • Homo sapiens (Human)

Colorectal cancer (CRC) is one of the most common types of gastrointestinal malignancy. Traditional therapeutic options for CRC exhibit a limited effect. Adoptive cellular therapy has emerged as a new treatment strategy for CRC. Dendritic cells (DCs) are potent antigen-presenting cells. Specific cytotoxic T lymphocytes (CTLs) activated by DCs pulsed with tumor lysate have been reported to be a safe and promising treatment approach for CRC. However, the antitumor effect of specific CTLs remains limited. The low immunogenicity of tumor-associated antigens (TAAs) is the main reason for this limited therapeutic effect. In the present study, α-gal epitopes were synthesized on the CRC cell line SW620 to increase the immunogenicity of TAAs. DCs were pulsed with α-gal-expressing tumor lysate and CTLs were activated by these DCs. The cytotoxicity of CTLs was measured in vitro. The results demonstrated that DCs pulsed with α-gal-expressing tumor lysate can increase the frequency of CD3+CD8+ CTLs and natural killer T cells, increase the level of tumor necrosis factor-α produced by CTLs and enhance the cytotoxicity of CTLs against tumor cells. Therefore, this novel approach may be an effective treatment strategy for patients with CRC.

  • FC/FACS
  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb