Product Citations: 4

The mechanistic target of rapamycin (mTOR) positively regulates multiple steps of the HIV-1 replication cycle. We previously reported that a 12-week supplementation of antiretroviral therapy (ART) with metformin, an indirect mTOR inhibitor used in type-2 diabetes treatment, reduced mTOR activation and HIV transcription in colon-infiltrating CD4+ T cells, together with systemic inflammation in nondiabetic people with HIV-1 (PWH). Herein, we investigated the antiviral mechanisms of metformin. In a viral outgrowth assay performed with CD4+ T cells from ART-treated PWH, and upon infection in vitro with replication-competent and VSV-G-pseudotyped HIV-1, metformin decreased virion release, but increased the frequency of productively infected CD4lowHIV-p24+ T cells. These observations coincided with increased BST2/tetherin (HIV release inhibitor) and Bcl-2 (pro-survival factor) expression, and improved recognition of productively infected T cells by HIV-1 envelope antibodies. Thus, metformin exerts pleiotropic effects on post-integration steps of the HIV-1 replication cycle and may be used to accelerate viral reservoir decay in ART-treated PWH.
© 2024 The Authors.

  • Immunology and Microbiology

Chronic immune barrier dysregulation among women with a history of violence victimization.

In JCI Insight on 16 May 2019 by Swaims-Kohlmeier, A., Haddad, L. B., et al.

We explored the association between violence victimization and increased risk for acquiring sexually transmitted infections (STIs) in women by measuring cellular immune barrier properties from the female reproductive tract. STI-negative participants reporting repeated prior victimization occurrences through the lifetime trauma and victimization history (LTVH) instrument were more likely to exhibit alterations in barrier homeostasis and the composition of critical immune mediators irrespective of demographic parameters or presence of bacterial vaginosis. By combining cellular data with mixed-effect linear modeling, we uncovered differences in local T cells, MHCII+ antigen-presenting cells, and epithelial cells indicative of altered trafficking behavior, increased immunosuppressive function, and decreased barrier integrity at sites of STI exposure that correlate most strongly with LTVH score. These data evidence a biological link between a history of violence victimization and risk of STI acquisition through immune dysregulation in the female reproductive tract.

  • Immunology and Microbiology

P2X7R mutation disrupts the NLRP3-mediated Th program and predicts poor cardiac allograft outcomes.

In The Journal of Clinical Investigation on 1 August 2018 by D'Addio, F., Vergani, A., et al.

Purinergic receptor-7 (P2X7R) signaling controls Th17 and Th1 generation/differentiation, while NOD-like receptor P3 (NLRP3) acts as a Th2 transcriptional factor. Here, we demonstrated the existence of a P2X7R/NLRP3 pathway in T cells that is dysregulated by a P2X7R intracellular region loss-of-function mutation, leading to NLRP3 displacement and to excessive Th17 generation due to abrogation of the NLRP3-mediated Th2 program. This ultimately resulted in poor outcomes in cardiac-transplanted patients carrying the mutant allele, who showed abnormal Th17 generation. Transient NLRP3 silencing in nonmutant T cells or overexpression in mutant T cells normalized the Th profile. Interestingly, IL-17 blockade reduced Th17 skewing of human T cells in vitro and abrogated the severe allograft vasculopathy and abnormal Th17 generation observed in preclinical models in which P2X7R was genetically deleted. This P2X7R intracellular region mutation thus impaired the modulatory effects of P2X7R on NLRP3 expression and function in T cells and led to NLRP3 dysregulation and Th17 skewing, delineating a high-risk group of cardiac-transplanted patients who may benefit from personalized therapy.

  • FC/FACS
  • Homo sapiens (Human)
  • Cardiovascular biology

Neonatal regulatory T cells have reduced capacity to suppress dendritic cell function.

In European Journal of Immunology on 1 September 2015 by Rueda, C. M., Moreno-Fernandez, M. E., et al.

Regulatory T cells (Treg cells) limit contact between dendritic cells (DCs) and conventional T cells (Tcons), decreasing the formation of aggregates as well as down-modulating the expression of co-stimulatory molecules by DCs, thus decreasing DC immunogenicity and abrogating T-cell activation. Despite the importance of this Treg-cell function, the capacity of Treg cells from term and preterm neonates to suppress DCs, and the suppressive mechanisms they use, are still undefined. We found that, relative to adult Treg cells, activated Treg cells from human neonates expressed lower FOXP3 and CTLA-4, but contained higher levels of cAMP. We developed an in vitro model in which Treg function was measured at a physiological ratio of 1 Treg for 10 Tcon and 1 monocyte-derived DC, as Treg target. Term and preterm Treg cells failed to suppress the formation of DC-Tcon aggregates, in contrast to naïve and memory Treg cells from adults. However, neonatal Treg cells diminished DC and Tcon activation as well as actin polymerization at the immunological synapses. In addition, CTLA-4 and cAMP were the main suppressive molecules used by neonatal Treg. Altogether, both preterm and term neonatal Treg cells appear less functional than adult Treg cells, and this defect is consistent with the general impairment of CD4 cell function in newborns.
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • Immunology and Microbiology
View this product on CiteAb