Product Citations: 18

During tuberculosis (TB), migration of dendritic cells (DCs) from the site of infection to the draining lymph nodes is known to be impaired, hindering the rapid development of protective T-cell-mediated immunity. However, the mechanisms involved in the delayed migration of DCs during TB are still poorly defined. Here, we found that infection of DCs with Mycobacterium tuberculosis (Mtb) triggers HIF1A-mediated aerobic glycolysis in a TLR2-dependent manner, and that this metabolic profile is essential for DC migration. In particular, the lactate dehydrogenase inhibitor oxamate and the HIF1A inhibitor PX-478 abrogated Mtb-induced DC migration in vitro to the lymphoid tissue-specific chemokine CCL21, and in vivo to lymph nodes in mice. Strikingly, we found that although monocytes from TB patients are inherently biased toward glycolysis metabolism, they differentiate into poorly glycolytic and poorly migratory DCs compared with healthy subjects. Taken together, these data suggest that because of their preexisting glycolytic state, circulating monocytes from TB patients are refractory to differentiation into migratory DCs, which may explain the delayed migration of these cells during the disease and opens avenues for host-directed therapies for TB.
© 2023, Maio et al.

  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Cell Biology
  • Immunology and Microbiology

Directly activating CD8+ T cells within the tumor through antigen-presenting cells (APCs) hold promise for tumor elimination. However, M2-like tumor-associated macrophages (TAMs), the most abundant APCs in tumors, hinder CD8+ T cell activation due to inefficient antigen cross-presentation. Here, we demonstrated a personalized nanotherapeutic platform using surgical tumor-derived galactose ligand-modified cancer cell membrane (CM)-coated cysteine protease inhibitor (E64)-loaded mesoporous silica nanoparticles for postsurgical cancer immunotherapy. The platform targeted M2-like TAMs and released E64 within lysosomes, which reshaped antigen cross-presentation and directly activated CD8+ T cells, thus suppressing B16-OVA melanoma growth. Furthermore, this platform, in combination with anti-PD-L1 antibodies, enhanced the therapeutic efficacy and substantially inhibited 4T1 tumor growth. CMs obtained from surgically resected tumors were used to construct a personalized nanotherapeutic platform, which, in synergy with immune checkpoint blockade (ICB), effectively inhibited postsurgical tumor recurrence in 4T1 tumor. Our work offered a robust, safe strategy for cancer immunotherapy and prevention of postsurgical tumor recurrence.

  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Proficient mismatch repair or microsatellite stable (pMMR/MSS) colorectal cancers (CRCs) are vastly outnumbered by deficient mismatch repair or microsatellite instability-high (dMMR/MSI-H) tumors and lack a response to immune checkpoint inhibitors (ICIs). In this study, we reported two distinct expression patterns of ASCL2 in pMMR/MSS and dMMR/MSI-H CRCs. ASCL2 is overexpressed in pMMR/MSS CRCs and maintains a stemness phenotype, accompanied by a lower density of tumor-infiltrating lymphocytes (TILs) than those in dMMR/MSI CRCs. In addition, coadministration of anti-PD-L1 antibodies facilitated T cell infiltration and provoked strong antitumor immunity and tumor regression in the MC38/shASCL2 mouse CRC model. Furthermore, overexpression of ASCL2 was associated with increased TGFB levels, which stimulate local Cancer-associated fibroblasts (CAFs) activation, inducing an immune-excluded microenvironment. Consistently, mice with deletion of Ascl2 specifically in the intestine (Villin-Cre+, Ascl2 flox/flox, named Ascl2 CKO) revealed fewer activated CAFs and higher proportions of infiltrating CD8+ T cells; We further intercrossed Ascl2 CKO with ApcMin/+ model suggesting that Ascl2-deficient expression in intestinal represented an immune infiltrating environment associated with a good prognosis. Together, our findings indicated ASCL2 induces an immune excluded microenvironment by activating CAFs through transcriptionally activating TGFB, and targeting ASCL2 combined with ICIs could present a therapeutic opportunity for MSS CRCs.
© 2023. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Prior exposure to microenvironmental signals could fundamentally change the response of macrophages to subsequent stimuli. It is believed that T helper-2 (Th2)-cell-type cytokine interleukin-4 (IL-4) and Toll-like receptor (TLR) ligand-activated transcriptional programs mutually antagonize each other, and no remarkable convergence has been identified between them. In contrast, here, we show that IL-4-polarized macrophages established a hyperinflammatory gene expression program upon lipopolysaccharide (LPS) exposure. This phenomenon, which we termed extended synergy, was supported by IL-4-directed epigenomic remodeling, LPS-activated NF-κB-p65 cistrome expansion, and increased enhancer activity. The EGR2 transcription factor contributed to the extended synergy in a macrophage-subtype-specific manner. Consequently, the previously alternatively polarized macrophages produced increased amounts of immune-modulatory factors both in vitro and in vivo in a murine Th2 cell-type airway inflammation model upon LPS exposure. Our findings establish that IL-4-induced epigenetic reprogramming is responsible for the development of inflammatory hyperresponsiveness to TLR activation and contributes to lung pathologies.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Genetics
  • Immunology and Microbiology

Lymphocyte Activation Gene-3 Regulates Dendritic Cell Metabolic Programing and T Cell Priming Function.

In The Journal of Immunology on 1 November 2021 by Garcia Cruz, D., Giri, R. R., et al.

Deficiency of lymphocyte activation gene-3 (LAG3) is significantly associated with increased cardiovascular disease risk with in vitro results demonstrating increased TNF-α and decreased IL-10 secretion from LAG3-deficient human B lymphoblasts. The hypothesis tested in this study was that Lag3 deficiency in dendritic cells (DCs) would significantly affect cytokine expression, alter cellular metabolism, and prime naive T cells to greater effector differentiation. Experimental approaches used included differentiation of murine bone marrow-derived DCs (BMDCs) to measure secreted cytokines, cellular metabolism, RNA sequencing, whole cell proteomics, adoptive OT-II CD4+Lag3 +/+ donor cells into wild-type (WT) C57BL/6 and Lag3 -/- recipient mice, and ex vivo measurements of IFN-γ from cultured splenocytes. Results showed that Lag3 -/- BMDCs secreted more TNF-α, were more glycolytic, used fewer fatty acids for mitochondrial respiration, and glycolysis was significantly reduced by exogenous IL-10 treatment. Under basal conditions, RNA sequencing revealed increased expression of CD40 and CD86 and other cytokine-signaling targets as compared with WT. Whole cell proteomics identified a significant number of proteins up- and downregulated in Lag3 -/- BMDCs, with significant differences noted in exogenous IL-10 responsiveness compared with WT cells. Ex vivo, IFN-γ expression was significantly higher in Lag3 -/- mice as compared with WT. With in vivo adoptive T cell and in vitro BMDC:T coculture experiments, Lag3 -/- BMDCs showed greater T cell effector differentiation and proliferation, respectively, compared with WT BMDCs. In conclusion, Lag3 deficiency in DCs is associated with an inflammatory phenotype that provides a plausible mechanism for increased cardiovascular disease risk in humans with LAG3 deficiency.
Copyright © 2021 by The American Association of Immunologists, Inc.

  • FC/FACS
  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Cell Biology
  • Immunology and Microbiology
View this product on CiteAb