Product Citations: 17

Diabetic retinopathy features damage to the retinal microvasculature that causes vessels to leak and proliferate and can lead to vision loss and blindness. Inflammation contributes to the development of diabetic retinopathy, but little is known about the role of the adaptive immune system, including the benefits of augmenting the Forkhead box protein P3 (Foxp3) regulatory T cell (Treg) compartment. We aimed to determine whether treatment with low-dose IL-2 expands and activates Tregs and reduces CD8+ T cells in the retina, and attenuates retinal inflammation and vasculopathy in murine models of diabetic retinopathy and neovascular retinopathy.
Mouse models of streptozocin-induced diabetes and oxygen-induced retinopathy (OIR) were administered low-dose IL-2 (25,000 U) or vehicle (sterile water) by i.p. injection. Reporter mice expressing Foxp3 as a red fluorescent protein (RFP) conjugate or CD8 as a green fluorescent protein (GFP) conjugate were used to evaluate Foxp3+ Tregs and CD8+ T cells, respectively, in blood, lymphoid organs and retina using flow cytometry or confocal microscopy. Vasculopathy and the expression of angiogenic and inflammatory factors were assessed in the retina.
Low-dose IL-2 significantly expanded CD4+CD25+Foxp3+ Tregs in the blood and spleen of mouse models of OIR and diabetes (1.4- to 1.9-fold increase, p<0.01). This expansion enhanced Treg functionality, increasing the expression of cytotoxic T-lymphocyte-associated protein4 (CTLA4), programmed cell death protein1 (PD1) and T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT), and increased the ratio of Tregs to CD8+ T cells. This was accompanied in the retina by a twofold increase in Foxp3+ Tregs (diabetes: 3.01 ± 0.41 vs 5.90 ± 1.25 cells per field, p<0.001; OIR: 4.41 ± 1.48 vs 10.05 ± 2.91 cells per field, p<0.001) and a reduction in CD8+ T cells (diabetes: 4.65 ± 0.58 vs 3.00 ± 0.81 cells per field, p<0.01; OIR: 5.51 ± 1.33 vs 3.17 ± 1.14 cells per field, p<0.01). Low-dose IL-2 reduced the levels of the potent inflammatory factors intercellular adhesion protein1 and TNF and the chemokine IFNγ-inducible protein10 (IP-10) in the retina. Importantly, low-dose IL-2 treatment effectively attenuated retinal vasculopathy, with marked reductions in acellular capillaries (diabetes: 0.48-fold decrease, p<0.001), neovascularisation (OIR: 0.68-fold decrease, p<0.01) and vascular leakage, and expression of vascular endothelial growth factor.
This study highlights the therapeutic potential of low-dose IL-2 to reduce retinal inflammation and severe vascular injury by boosting Tregs and reducing CD8+ T cells and inflammatory factors.
© 2025. The Author(s).

  • Immunology and Microbiology

Tumor-derived exosomal miR-425-5p and miR-135b-3p enhance colorectal cancer progression through immune suppression and vascular permeability promotion.

In World Journal of Gastrointestinal Oncology on 15 June 2025 by Feng, C. Z., Zhong, S. Q., et al.

Colorectal cancer (CRC) is a leading cause of cancer-related morbidity and mortality globally. Exosomal microRNAs (miRNAs) are known to modulate tumor progression by influencing immune responses and vascular dynamics. However, the roles of specific exosomal miRNAs, such as miR-425-5p and miR-135b-3p, in CRC remain unclear.
To explore the specific roles and underlying mechanisms of exosomal miR-425-5p and miR-135b-3p in CRC progression.
Differentially expressed miRNAs were identified through microarray analysis of exosomes isolated from CRC tissues and adjacent normal mucosa. Functional roles of miR-425-5p and miR-135b-3p were evaluated in vitro using macrophage polarization, T cell differentiation, and vascular permeability assays, as well as in vivo tumor formation and metastasis experiments in nude mice. Validation experiments were performed using CRC cell lines (HCT116 and SW620).
Exosomal miR-425-5p and miR-135b-3p were significantly upregulated in CRC compared to normal tissues. Functional studies revealed that miR-425-5p promotes macrophage M2-like polarization and suppresses T cell proinflammatory responses, while miR-135b-3p enhances vascular permeability and angiogenesis. Inhibition of these miRNAs in CRC cell-derived exosomes significantly suppressed tumor growth and metastasis in nude mice, reprogramming the tumor microenvironment toward reduced angiogenesis and enhanced immune activation. Combined inhibition of both miRNAs resulted in the most pronounced effects.
Exosomal miR-425-5p and miR-135b-3p drive CRC progression by promoting immune suppression and vascular permeability. Their inhibition offers a promising strategy for modulating the tumor microenvironment and limiting CRC metastasis.
©The Author(s) 2025. Published by Baishideng Publishing Group Inc. All rights reserved.

  • Cancer Research
  • Immunology and Microbiology

Although cancer cachexia is classically characterized as a systemic inflammatory disorder, emerging evidence indicates that weight loss also associates with local tissue inflammation. We queried the regulation of this inflammation and its causality to cachexia by exploring skeletal muscle, whose atrophy strongly associates with poor outcomes. Using multiple mouse models and patient samples, we show that cachectic muscle is marked by enhanced innate immunity. Nuclear factor κB (NF-κB) activity in multiple cells, including satellite cells, myofibers, and fibro-adipogenic progenitors, promotes macrophage expansion equally derived from infiltrating monocytes and resident cells. Moreover, NF-κB-activated cells and macrophages undergo crosstalk; NF-κB+ cells recruit macrophages to inhibit regeneration and promote atrophy but, interestingly, also protect myofibers, while macrophages stimulate NF-κB+ cells to sustain an inflammatory feedforward loop. Together, we propose that NF-κB functions in multiple cells in the muscle microenvironment to stimulate macrophages that both promote and protect against muscle wasting in cancer.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Cancer Research
  • Immunology and Microbiology

Periodontal disease can induce dysbiosis, a compositional and functional alteration in the microbiota. Dysbiosis induced by periodontal disease is known to cause systemic inflammation and may affect transplant immunity. Here, we examined the effects of periodontal disease-related intestinal dysbiosis on transplant immunity using a mouse model of allogenic skin graft in which the mice were orally administered the periodontal pathogen Porphyromonas gingivalis (Pg). For 6 weeks, the Pg group orally received Pg while the control group orally received phosphate-buffered saline solution. After that, both groups received allogenic skin grafts. 16 s rRNA analysis of feces revealed that oral administration of Pg significantly increased three short chain fatty acids (SCFAs) producing genera. SCFA (acetate and propionate) levels were significantly higher in the Pg group (p = 0.040 and p = 0.005). The ratio of regulatory T cells, which are positively correlated with SCFAs, to total CD4+ T cells in the peripheral blood and spleen was significantly greater (p = 0.002 and p < 0.001) in the Pg group by flowcytometry. Finally, oral administration of Pg significantly prolonged skin graft survival (p < 0.001) and reduced pathological inflammation in transplanted skin grafts. In conclusion, periodontal pathogen-induced intestinal dysbiosis may affect transplant immunity through increased levels of SCFAs and regulatory T cells. (198 words).
© 2023. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Regulating Th17/Treg Balance Contributes to the Therapeutic Effect of Ziyuglycoside I on Collagen-Induced Arthritis.

In International Journal of Molecular Sciences on 17 December 2022 by Wang, M., Su, T., et al.

To investigate the therapeutic effect and primary pharmacological mechanism of Ziyuglycoside I (Ziyu I) on collagen-induced arthritis (CIA) mice. CIA mice were treated with 5, 10, or 20 mg/kg of Ziyu I or 2 mg/kg of methotrexate (MTX), and clinical manifestations, as well as pathological changes, were observed. T cell viability and subset type were determined, and serum levels of transforming growth factor-beta (TGF-β) and interleukin-17 (IL-17) were detected. The mRNA expression of retinoid-related orphan receptor-γt (RORγt) and transcription factor forkhead box protein 3 (Foxp3) in mouse spleen lymphocytes was ascertained by the real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). Molecular docking was used to detect whether there was a molecular interaction between Ziyu I and protein kinase B (Akt). The activation of mechanistic target of rapamycin (mTOR) in T cells was verified by Western blotting or immunofluorescence. Ziyu I treatment effectively alleviated arthritis symptoms of CIA mice, including body weight, global score, arthritis index, and a number of swollen joints. Similarly, pathological changes of joints and spleens in arthritic mice were improved. The thymic index, T cell activity, and RORγt production of Ziyu I-treated mice were significantly reduced. Notably, through molecular docking, western blotting, and immunofluorescence data analysis, it was found that Ziyu I could interact directly with Akt to reduce downstream mTOR activation and inhibit helper T cell 17 (Th17) differentiation, thereby regulating Th17/regulatory T cell (Treg) balance and improving arthritis symptoms. Ziyu I effectively improves arthritic symptoms in CIA mice by inhibiting mTOR activation, thereby affecting Th17 differentiation and regulating Th17/Treg balance.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb