Product Citations: 6

The combination of Programmed Cell Death 1 (PD-1) and Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) blockade has dramatically improved the overall survival rate for malignant melanoma. Immune checkpoint blockers (ICBs) limit the tumor's immune escape yet only for approximately a third of all tumors and, in most cases, for a limited amount of time. Several approaches to overcome resistance to ICBs are being investigated among which the addition of epigenetic drugs that are expected to act on both immune and tumor cells. Guadecitabine, a dinucleotide prodrug of a decitabine linked via phosphodiester bond to a guanosine, showed promising results in the phase-1 clinical trial, NIBIT-M4 (NCT02608437).
We used the syngeneic B16F10 murine melanoma model to study the effects of immune checkpoint blocking antibodies against CTLA-4 and PD-1 in combination, with and without the addition of Guadecitabine. We comprehensively characterized the tumor's and the host's responses under different treatments by flow cytometry, multiplex immunofluorescence and methylation analysis.
In combination with ICBs, Guadecitabine significantly reduced subcutaneous tumor growth as well as metastases formation compared to ICBs and Guadecitabine treatment. In particular, Guadecitabine greatly enhanced the efficacy of combined ICBs by increasing effector memory CD8+ T cells, inducing effector NK cells in the spleen and reducing tumor infiltrating regulatory T cells and myeloid derived suppressor cells (MDSC), in the tumor microenvironment (TME). Guadecitabine in association with ICBs increased serum levels of IFN-γ and IFN-γ-induced chemokines with anti-angiogenic activity. Guadecitabine led to a general DNA-demethylation, in particular of sites of intermediate methylation levels.
These results indicate Guadecitabine as a promising epigenetic drug to be added to ICBs therapy.
© 2023. The Author(s).

  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Plasma cell but not CD20-mediated B-cell depletion protects from bleomycin-induced lung fibrosis.

In The European Respiratory Journal on 1 November 2022 by Prêle, C. M., Miles, T., et al.

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease associated with chronic inflammation and tissue remodelling leading to fibrosis, reduced pulmonary function, respiratory failure and death. Bleomycin (Blm)-induced lung fibrosis in mice replicates several clinical features of human IPF, including prominent lymphoid aggregates of predominantly B-cells that accumulate in the lung adjacent to areas of active fibrosis. We have shown previously a requirement for B-cells in the development of Blm-induced lung fibrosis in mice. To determine the therapeutic potential of inhibiting B-cell function in pulmonary fibrosis, we examined the effects of anti-CD20 B-cell ablation therapy to selectively remove mature B-cells from the immune system and inhibit Blm-induced lung fibrosis. Anti-CD20 B-cell ablation did not reduce fibrosis in this model; however, immune phenotyping of peripheral blood and lung resident cells revealed that anti-CD20-treated mice retained a high frequency of CD19+ CD138+ plasma cells. Interestingly, high levels of CD138+ cells were also identified in the lung tissue of patients with IPF, consistent with the mouse model. Treatment of mice with bortezomib, which depletes plasma cells, reduced the level of Blm-induced lung fibrosis, implicating plasma cells as important effector cells in the development and progression of pulmonary fibrosis.
Copyright ©The authors 2022.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Discovery of a signaling feedback circuit that defines interferon responses in myeloproliferative neoplasms.

In Nature Communications on 1 April 2022 by Saleiro, D., Wen, J. Q., et al.

Interferons (IFNs) are key initiators and effectors of the immune response against malignant cells and also directly inhibit tumor growth. IFNα is highly effective in the treatment of myeloproliferative neoplasms (MPNs), but the mechanisms of action are unclear and it remains unknown why some patients respond to IFNα and others do not. Here, we identify and characterize a pathway involving PKCδ-dependent phosphorylation of ULK1 on serine residues 341 and 495, required for subsequent activation of p38 MAPK. We show that this pathway is essential for IFN-suppressive effects on primary malignant erythroid precursors from MPN patients, and that increased levels of ULK1 and p38 MAPK correlate with clinical response to IFNα therapy in these patients. We also demonstrate that IFNα treatment induces cleavage/activation of the ULK1-interacting ROCK1/2 proteins in vitro and in vivo, triggering a negative feedback loop that suppresses IFN responses. Overexpression of ROCK1/2 is seen in MPN patients and their genetic or pharmacological inhibition enhances IFN-anti-neoplastic responses in malignant erythroid precursors from MPN patients. These findings suggest the clinical potential of pharmacological inhibition of ROCK1/2 in combination with IFN-therapy for the treatment of MPNs.
© 2022. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

  • FC/FACS
  • Cancer Research

PTP1B Is an Intracellular Checkpoint that Limits T-cell and CAR T-cell Antitumor Immunity.

In Cancer Discovery on 1 March 2022 by Wiede, F., Lu, K. H., et al.

Immunotherapies aimed at alleviating the inhibitory constraints on T cells have revolutionized cancer management. To date, these have focused on the blockade of cell-surface checkpoints such as PD-1. Herein we identify protein tyrosine phosphatase 1B (PTP1B) as an intracellular checkpoint that is upregulated in T cells in tumors. We show that increased PTP1B limits T-cell expansion and cytotoxicity to contribute to tumor growth. T cell-specific PTP1B deletion increased STAT5 signaling, and this enhanced the antigen-induced expansion and cytotoxicity of CD8+ T cells to suppress tumor growth. The pharmacologic inhibition of PTP1B recapitulated the T cell-mediated repression of tumor growth and enhanced the response to PD-1 blockade. Furthermore, the deletion or inhibition of PTP1B enhanced the efficacy of adoptively transferred chimeric antigen receptor (CAR) T cells against solid tumors. Our findings identify PTP1B as an intracellular checkpoint whose inhibition can alleviate the inhibitory constraints on T cells and CAR T cells to combat cancer.
Tumors subvert antitumor immunity by engaging checkpoints that promote T-cell exhaustion. Here we identify PTP1B as an intracellular checkpoint and therapeutic target. We show that PTP1B is upregulated in intratumoral T cells and that its deletion or inhibition enhances T-cell antitumor activity and increases CAR T-cell effectiveness against solid tumors. This article is highlighted in the In This Issue feature, p. 587.
©2021 The Authors; Published by the American Association for Cancer Research.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

NIX-Mediated Mitophagy Promotes Effector Memory Formation in Antigen-Specific CD8+ T Cells.

In Cell Reports on 12 November 2019 by Gupta, S. S., Sharp, R., et al.

Autophagy plays a critical role in the maintenance of immunological memory. However, the molecular mechanisms involved in autophagy-regulated effector memory formation in CD8+ T cells remain unclear. Here we show that deficiency in NIX-dependent mitophagy leads to metabolic defects in effector memory T cells. Deletion of NIX caused HIF1α accumulation and altered cellular metabolism from long-chain fatty acid to short/branched-chain fatty acid oxidation, thereby compromising ATP synthesis during effector memory formation. Preventing HIF1α accumulation restored long-chain fatty acid metabolism and effector memory formation in antigen-specific CD8+ T cells. Our study suggests that NIX-mediated mitophagy is critical for effector memory formation in T cells.
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb