Product Citations: 3

Engineering second-generation TCR-T cells by site-specific integration of TRAF-binding motifs into the CD247 locus.

In Journal for Immunotherapy of Cancer on 1 April 2023 by Lah, S., Kim, S., et al.

The incorporation of co-stimulatory signaling domains into second-generation chimeric antigen receptors (CARs) significantly enhances the proliferation and persistence of CAR-T cells in vivo, leading to successful clinical outcomes.
To achieve such functional enhancement in transgenic T-cell receptor-engineered T-cell (TCR-T) therapy, we designed a second-generation TCR-T cell in which CD3ζ genes modified to contain the intracellular domain (ICD) of the 4-1BB receptor were selectively inserted into the CD247 locus.
This modification enabled the simultaneous recruitment of key adaptor molecules for signals 1 and 2 on TCR engagement. However, the addition of full-length 4-1BB ICD unexpectedly impaired the expression and signaling of TCRs, leading to suboptimal antitumor activity of the resulting TCR-T cells in vivo. We found that the basic-rich motif (BRM) in the 4-1BB ICD was responsible for the undesirable outcomes, and that fusion of minimal tumor necrosis factor receptor-associated factor (TRAF)-binding motifs at the C-terminus of CD3ζ (zBBΔBRM) was sufficient to recruit TRAF2, the key adaptor molecule in 4-1BB signaling, while retaining the expression and proximal signaling of the transgenic TCR. Consequently, TCR-T cells expressing zBBΔBRM exhibited improved persistence and expansion in vitro and in vivo, resulting in superior antitumor activity in a mouse xenograft model.
Our findings offer a promising strategy for improving the intracellular signaling of TCR-T cells and their application in treating solid tumors.
© Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

  • FC/FACS
  • Immunology and Microbiology

Phosphopeptides derived from dysregulated protein phosphorylation in cancer cells can be processed and presented by MHC class I and class II molecules and, therefore, represent an untapped class of tumor-specific antigens that could be used as widely expressed "public" cancer neoantigens (NeoAgs). We generated a TCR mimic (TCRm) mAb, 6B1, specific for a phosphopeptide derived from insulin receptor substrate 2 (pIRS2) presented by HLA-A*02:01. The pIRS2 epitope's presentation by HLA-A*02:01 was confirmed by mass spectrometry. The TCRm 6B1 specifically bound to pIRS2/HLA-A2 complex on tumor cell lines that expressed pIRS2 in the context of HLA-A*02:01. Bispecific mAbs engaging CD3 of T cells were able to kill tumor cell lines in a pIRS2- and HLA-A*02:01-restricted manner. Structure modeling shows a prerequisite for an arginine or lysine at the first position to bind mAb. Therefore, 6B1 could recognize phosphopeptides derived from various phosphorylated proteins with similar amino acid compositions. This raised the possibility that a TCRm specific for the pIRS2/HLA-A2 complex could target a range of phosphopeptides presented by HLA-A*02:01 in various tumor cells. This is the first TCRm mAb to our knowledge targeting a phosphopeptide/MHC class I complex; the potential of this class of agents for clinical applications warrants further investigation.

Immunodeficient mouse model for human hematopoietic stem cell engraftment and immune system development.

In Methods in Molecular Biology (Clifton, N.J.) on 27 July 2014 by Aryee, K. E., Shultz, L. D., et al.

Immunodeficient mice engrafted with human immune systems provide an exciting model to study human immunobiology in an in vivo setting without placing patients at risk. The essential parameter for creation of these "humanized models" is engraftment of human hematopoietic stem cells (HSC) that will allow for optimal development of human immune systems. However, there are a number of strategies to generate humanized mice and specific protocols can vary significantly among different laboratories. Here we describe a protocol for the co-implantation of human HSC with autologous fetal liver and thymic tissues into immunodeficient mice to create a humanized model with optimal human T cell development. This model, often referred to as the Thy/Liv or BLT (bone marrow, liver, thymus) mouse, develops a functional human immune system, including HLA-restricted human T cells, B cells, and innate immune cells.

  • Biochemistry and Molecular biology
  • Immunology and Microbiology
  • Stem Cells and Developmental Biology
View this product on CiteAb