Product Citations: 13

Neoadjuvant ipilimumab + nivolumab (Ipi+Nivo) and nivolumab + chemotherapy (Nivo+CT) induce greater pathologic response rates than CT alone in patients with operable non-small cell lung cancer (NSCLC). The impact of adding ipilimumab to neoadjuvant Nivo+CT is unknown. Here we report the results and correlates of two arms of the phase 2 platform NEOSTAR trial testing neoadjuvant Nivo+CT and Ipi+Nivo+CT with major pathologic response (MPR) as the primary endpoint. MPR rates were 32.1% (7/22, 80% confidence interval (CI) 18.7-43.1%) in the Nivo+CT arm and 50% (11/22, 80% CI 34.6-61.1%) in the Ipi+Nivo+CT arm; the primary endpoint was met in both arms. In patients without known tumor EGFR/ALK alterations, MPR rates were 41.2% (7/17) and 62.5% (10/16) in the Nivo+CT and Ipi+Nivo+CT groups, respectively. No new safety signals were observed in either arm. Single-cell sequencing and multi-platform immune profiling (exploratory endpoints) underscored immune cell populations and phenotypes, including effector memory CD8+ T, B and myeloid cells and markers of tertiary lymphoid structures, that were preferentially increased in the Ipi+Nivo+CT cohort. Baseline fecal microbiota in patients with MPR were enriched with beneficial taxa, such as Akkermansia, and displayed reduced abundance of pro-inflammatory and pathogenic microbes. Neoadjuvant Ipi+Nivo+CT enhances pathologic responses and warrants further study in operable NSCLC. (ClinicalTrials.gov registration: NCT03158129 .).
© 2023. The Author(s).

  • FC/FACS
  • Cancer Research

COVID-19 vaccines elicit humoral and cellular immune responses. Durable maintenance of vaccine-induced immunity is required for long-term protection of the host. Here, we examine activation and differentiation of vaccine-induced CD8+ T cells using MHC class I (MHC-I) multimers and correlations between early differentiation and the durability of CD8+ T cell responses among healthcare workers immunized with two doses of BNT162b2. The frequency of MHC-I multimer+ cells is robustly increased by BNT162b2 but decreases 6 months post-second vaccination to 2.4%-65.6% (23.0% on average) of the peak. MHC-I multimer+ cells dominantly exhibit phenotypes of activated effector cells 1-2 weeks post-second vaccination and gradually acquire phenotypes of long-term memory cells, including stem cell-like memory T (TSCM) cells. Importantly, the frequency of TSCM cells 1-2 weeks post-second vaccination significantly correlates with the 6-month durability of CD8+ T cells, indicating that early generation of TSCM cells determines the longevity of vaccine-induced memory CD8+ T cell responses.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology
  • Stem Cells and Developmental Biology

Although CD8+ T cells recognize neoantigens that arise from somatic mutations in cancer, only a small fraction of nonsynonymous mutations give rise to clinically relevant neoantigens. In this study, HLA class I ligandomes of a panel of human colorectal cancer (CRC) and matched normal tissues were analyzed using mass spectrometry-based proteogenomic analysis. Neoantigen presentation was rare; however, the analysis detected a single neoantigen in a mismatch repair-deficient CRC (dMMR-CRC) tissue sample carrying 3967 nonsynonymous mutations, where abundant tumor-infiltrating lymphocytes (TILs) and inflamed gene expression status were observed in the tumor microenvironment (TME). Using the HLA class I ligandome data and gene expression profiles, a set of nonmutated tumor-associated antigen (TAA) candidates was concomitantly identified. Interestingly, CD8+ TILs predominantly recognized the detected neoantigen over the array of TAA candidates. Neoantigen-reactive CD8+ TILs showed PD-1 positivity and exhibited functional and specific responses. Moreover, T cell receptor (TCR) profiling identified the sequence of the neoantigen-reactive TCR clonotype and showed its expansion in the TME. Transduction of the sequenced TCR conferred neoantigen specificity and cytotoxicity to peripheral blood lymphocytes. The proteogenomic approach revealed the antigenic and reactive T cell landscape in dMMR-CRC, demonstrating the presence of an immunogenic neoantigen and its potential therapeutic applications.

  • FC/FACS
  • Cancer Research

Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer.

In Signal Transduction and Targeted Therapy on 20 January 2021 by Ding, Z., Li, Q., et al.

Neoantigens are considered to be ultimate target of tumor immunotherapy due to their high tumor specificity and immunogenicity. Dendritic cell (DCs) vaccines based on neoantigens have exciting effects in treatment of some malignant tumors and are a promising therapeutic modality. Lung cancer is a lethal disease with the highest morbidity and mortality rate in the world. Despite the rapid development of targeted therapy and immune checkpoint inhibitors for lung cancer in recent years, their efficacy is still unsatisfactory overall. Therefore, there is an urgent unmet clinical need for lung cancer treatment. Here, we attempted to treat lung cancer using a personalized neoantigen peptide-pulsed autologous DC vaccine and conducted a single-arm, 2 medical centers, pilot study initiated by the investigator (ChiCTR-ONC-16009100, NCT02956551). The patients enrolled were patients with heavily treated metastatic lung cancer. Candidate neoantigens were derived from whole-exome sequencing and RNA sequencing of fresh biopsy tissues as well as bioinformatics analysis. A total of 12 patients were enrolled in this study. A total of 85 vaccine treatments were administered with a median value of 5 doses/person (range: 3-14 doses/person). In total, 12-30 peptide-based neoantigens were selected for each patient. All treatment-related adverse events were grade 1-2 and there were no delays in dosing due to toxic effects. The objective effectiveness rate was 25%; the disease control rate was 75%; the median progression-free survival was 5.5 months and the median overall survival was 7.9 months. This study provides new evidence for neoantigen vaccine therapy and new therapeutic opportunities for lung cancer treatment.

  • Cancer Research
  • Immunology and Microbiology

Memory T cell responses have been demonstrated in COVID-19 convalescents, but ex vivo phenotypes of SARS-CoV-2-specific T cells have been unclear. We detected SARS-CoV-2-specific CD8+ T cells by MHC class I multimer staining and examined their phenotypes and functions in acute and convalescent COVID-19. Multimer+ cells exhibited early differentiated effector-memory phenotypes in the early convalescent phase. The frequency of stem-like memory cells was increased among multimer+ cells in the late convalescent phase. Cytokine secretion assays combined with MHC class I multimer staining revealed that the proportion of interferon-γ (IFN-γ)-producing cells was significantly lower among SARS-CoV-2-specific CD8+ T cells than those specific to influenza A virus. Importantly, the proportion of IFN-γ-producing cells was higher in PD-1+ cells than PD-1- cells among multimer+ cells, indicating that PD-1-expressing, SARS-CoV-2-specific CD8+ T cells are not exhausted, but functional. Our current findings provide information for understanding of SARS-CoV-2-specific CD8+ T cells elicited by infection or vaccination.
Copyright © 2020 Elsevier Inc. All rights reserved.

  • COVID-19
  • Immunology and Microbiology
View this product on CiteAb