Product Citations: 9

Currently, the precise causes of over 40 % of recurrent spontaneous abortion (RSA) cases cannot be identified, leading to the term "unexplained RSA" (URSA). Through an exploration of the gut microbiota, metabolites, and immune cell subsets in URSA, this study establishes a link between gut microbiota-derived metabolites and immune cells. The results indicate reduced diversity in the gut microbiota of URSA. Targeted metabolomic analyses reveal decreased levels of gut microbiota-derived deoxycholic acid (DCA), glycolithocholic acid (GLCA), acetate, propionate, and butyrate in URSA. Furthermore, elevated frequencies of Th1, Th17, and plasma B cells, along with decreased frequencies of Tregs and Bregs, are observed in the peripheral blood of URSA. The results demonstrate correlations between the levels of gut microbiota-derived bile acids and short-chain fatty acids and the frequencies of various immune cell subsets in circulation. Collectively, this study uncovers an association between gut microbiota-derived metabolites and circulating immune cell subsets in URSA.
© 2024 The Authors.

  • Homo sapiens (Human)
  • Biochemistry and Molecular biology
  • Cell Biology
  • Immunology and Microbiology

Differential regulatory T cell signature after recovery from mild COVID-19.

In Frontiers in Immunology on 28 March 2023 by de Sousa Palmeira, P. H., Peixoto, R. F., et al.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by a range of symptoms in which host immune response have been associated with disease progression. However, the putative role of regulatory T cells (Tregs) in determining COVID-19 outcomes has not been thoroughly investigated. Here, we compared peripheral Tregs between volunteers not previously infected with SARS-CoV-2 (healthy control [HC]) and volunteers who recovered from mild (Mild Recovered) and severe (Severe Recovered) COVID-19. Peripheral blood mononuclear cells (PBMC) were stimulated with SARS-CoV-2 synthetic peptides (Pool Spike CoV-2 and Pool CoV-2) or staphylococcal enterotoxin B (SEB). Results of a multicolor flow cytometric assay showed higher Treg frequency and expression of IL-10, IL-17, perforin, granzyme B, PD-1, and CD39/CD73 co-expression in Treg among the PBMC from the Mild Recovered group than in the Severe Recovered or HC groups for certain SARS-CoV-2 related stimulus. Moreover, Mild Recovered unstimulated samples presented a higher Tregs frequency and expression of IL-10 and granzyme B than did that of HC. Compared with Pool CoV-2 stimuli, Pool Spike CoV-2 reduced IL-10 expression and improved PD-1 expression in Tregs from volunteers in the Mild Recovered group. Interestingly, Pool Spike CoV-2 elicited a decrease in Treg IL-17+ frequency in the Severe Recovered group. In HC, the expression of latency-associated peptide (LAP) and cytotoxic granule co-expression by Tregs was higher in Pool CoV-2 stimulated samples. While Pool Spike CoV-2 stimulation reduced the frequency of IL-10+ and CTLA-4+ Tregs in PBMC from volunteers in the Mild Recovered group who had not experienced certain symptoms, higher levels of perforin and perforin+granzyme B+ co-expression by Tregs were found in the Mild Recovered group in volunteers who had experienced dyspnea. Finally, we found differential expression of CD39 and CD73 among volunteers in the Mild Recovered group between those who had and had not experienced musculoskeletal pain. Collectively, our study suggests that changes in the immunosuppressive repertoire of Tregs can influence the development of a distinct COVID-19 clinical profile, revealing that a possible modulation of Tregs exists among volunteers of the Mild Recovered group between those who did and did not develop certain symptoms, leading to mild disease.
Copyright © 2023 de Sousa Palmeira, Peixoto, Csordas, de Medeiros, de Azevedo, Veras, Janebro, Amaral and Keesen.

  • FC/FACS
  • COVID-19
  • Immunology and Microbiology

Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung cancer.

In Cancer Cell on 8 November 2021 by Chan, J. M., Quintanal-Villalonga, A., et al.

Small cell lung cancer (SCLC) is an aggressive malignancy that includes subtypes defined by differential expression of ASCL1, NEUROD1, and POU2F3 (SCLC-A, -N, and -P, respectively). To define the heterogeneity of tumors and their associated microenvironments across subtypes, we sequenced 155,098 transcriptomes from 21 human biospecimens, including 54,523 SCLC transcriptomes. We observe greater tumor diversity in SCLC than lung adenocarcinoma, driven by canonical, intermediate, and admixed subtypes. We discover a PLCG2-high SCLC phenotype with stem-like, pro-metastatic features that recurs across subtypes and predicts worse overall survival. SCLC exhibits greater immune sequestration and less immune infiltration than lung adenocarcinoma, and SCLC-N shows less immune infiltrate and greater T cell dysfunction than SCLC-A. We identify a profibrotic, immunosuppressive monocyte/macrophage population in SCLC tumors that is particularly associated with the recurrent, PLCG2-high subpopulation.Copyright © 2021 Elsevier Inc. All rights reserved.

  • Cancer Research

Decidual memory T-cell subsets and memory T-cell stimulatory cytokines in early- and late-onset preeclampsia.

In American Journal of Reproductive Immunology (New York, N.Y. : 1989) on 1 October 2020 by Kieffer, T. E. C., Laskewitz, A., et al.

Preeclampsia is a major cause of fetal and maternal mortality and morbidity. Disturbed fetal-maternal immune tolerance, and therewith memory T cells, might be involved in its etiology. This study aims to give insight into memory T-cell populations and its associated cytokines in the decidual layers in early-onset preeclampsia (EO-PE) and late-onset preeclampsia (LO-PE).
Lymphocytes were isolated from the decidua parietalis and basalis from EO-PE (n = 6), LO-PE (n = 8) and healthy (n = 15) pregnancies. CD4+ and CD8+ central- (CCR7+ ), effector- (CCR7- ), tissue resident- (CD103+ ), and regulatory- (Foxp3+ ) memory cell (CD45RO+ ) populations and their activation status (CD69+ ) were analyzed using flow cytometry. qRT-PCR analysis was performed on decidua parietalis and basalis biopsies to detect mRNA expression of interferon-gamma, interleukin-1B, IL2, IL6, IL7, IL8, IL10, IL15, and IL23.
CD4+ central-memory (CM) cell proportions were lower in the decidua parietalis in LO-PE (P < .0001) and EO-PE (P < .01) compared to healthy pregnancies. CD8+ memory (P < .05) and CD8+ CM (P < .01) cell proportions were also lower in the decidua parietalis in EO-PE compared to healthy pregnancies. This was accompanied by higher IL15 (P < .05) and IL23 (P < .05) and lower IL7 (P < .05) mRNA expression in decidua basalis biopsies from EO-PE compared to healthy pregnancies, analyzed by qPCR.
In conclusion, decidual memory T-cell proportions, their activation status, and associated cytokines are altered in preeclampsia and might therefore be involved in fetal-maternal immune tolerance and the pathophysiology of preeclampsia.
© 2020 The Authors. American Journal of Reproductive Immunology published by John Wiley & Sons Ltd.

  • Immunology and Microbiology

Immune-checkpoint inhibitors improve the survival of head and neck squamous cell carcinoma (HNSCC) patients. Although recent studies have demonstrated that the tumor immune microenvironment (TIME) has critical roles in immunotherapy, the precise mechanisms involved are unclear. Therefore, further investigations of TIME are required for the improvement of immunotherapy. The frequency of effector regulatory T-cells (eTregs) and the expression of immune-checkpoint molecules (ICM) on eTregs and conventional T-cells (Tconvs) both in peripheral blood lymphocytes (PBL) and tumor-infiltrating lymphocytes (TIL) from HNSCC patients were analyzed by flow cytometry and their distributions were evaluated by multi-color immunofluorescence microscopy. High frequency eTreg infiltration into HNSCC tissues was observed and high expressions of CD25, FOXP3, stimulatory-ICM (4-1BB, ICOS, OX40 and GITR) and inhibitory-ICM (programmed cell death-1 [PD-1] and cytotoxic T-lymphocyte-associated protein-4 [CTLA-4]) were found on invasive eTregs. In contrast, the expression of stimulatory-ICM on Tconvs was low and the expression of inhibitory-ICM was high. In addition, ICM-ligands (programmed cell death-1 [PD-L1], galectin-9 and CEACAM-1) were frequently expressed on cancer cells. PD-L1 and galectin-9 were also expressed on macrophages. PD-1+ T-cells interacted with PD-L1+ cancer cells or PD-L1+ macrophages. This suggested that in TIL, eTregs are highly activated, but Tconvs are exhausted or inactivated by eTregs and immune-checkpoint systems, and ICM and eTregs are strongly involved in the creation of an immunosuppressive environment in HNSCC tissues. These suggested eTreg targeting drugs are expected to be a combination partner with immune-checkpoint inhibitors that will improve immunotherapy of HNSCC.
© 2020 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb