Product Citations: 4

Researchers who aim to globally analyze the gastrointestinal immune system via flow cytometry have many protocol options to choose from, with specifics generally tied to gut wall layers of interest. To get a clearer idea of the approach we should use on full-thickness colon samples from mice, we first undertook a systematic comparison of three tissue dissociation techniques: two based on enzymatic cocktails and the other one based on manual crushing. Using flow cytometry panels of general markers of lymphoid and myeloid cells, we found that the presence of cell-surface markers and relative cell population frequencies were more stable with the mechanical method. Both enzymatic approaches were associated with a marked decrease of several cell-surface markers. Using mechanical dissociation, we then developed two minimally overlapping panels, consisting of a total of 26 antibodies, for serial profiling of lymphoid and myeloid lineages from the mouse colon in greater detail. Here, we highlight how we accurately delineate these populations by manual gating, as well as the reproducibility of our panels on mouse spleen and whole blood. As a proof-of-principle of the usefulness of our general approach, we also report segment- and life stage-specific patterns of immune cell profiles in the colon. Overall, our data indicate that mechanical dissociation is more suitable and efficient than enzymatic methods for recovering immune cells from all colon layers at once. Additionally, our panels will provide researchers with a relatively simple tool for detailed immune cell profiling in the murine gastrointestinal tract, regardless of life stage or experimental conditions.
© 2024. The Author(s).

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Protocol to evaluate the impact of murine MCT1-deficient CD8+ T cells on adipogenesis.

In STAR Protocols on 19 May 2023 by Macchi, C., Moregola, A., et al.

The infiltration of activated T cells, such as CD8+ effector, in metabolic tissues plays a crucial role for the initiation and propagation of obesity-induced inflammation. Given the pivotal role of lactate transporter monocarboxylate transporter 1 (MCT1) in immune cell activation, we present a protocol for the isolation and activation of CD8+ T lymphocytes selectively lacking MCT1. We describe steps for the induction of adipocyte differentiation, CD8+ T isolation and activation, and adipocyte-CD8+ T cell co-culture. We then detail qPCR analysis on differentiated adipocytes. For complete details on the use and execution of this protocol, please refer to Macchi et al.1.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

Immunity plays a key role in epithelial ovarian cancer (EOC) progression with a well-documented correlation between patient survival and high intratumoral CD8+ to T regulatory cell (Treg) ratios. We previously identified dysregulated DPP4 activity in EOCs as a potentially immune-disruptive influence contributing to a reduction in CXCR3-mediated T-cell infiltration in solid tumours. We therefore hypothesized that inhibition of DPP4 activity by sitagliptin, an FDA-approved inhibitor, would improve T-cell infiltration and function in a syngeneic ID8 mouse model of EOC. Daily oral sitagliptin at 50 mg/kg was provided to mice with established primary EOCs. Sitagliptin treatment decreased metastatic tumour burden and significantly increased overall survival and was associated with significant changes to the immune landscape. Sitagliptin increased overall CXCR3-mediated CD8+ T-cell trafficking to the tumour and enhanced the activation and proliferation of CD8+ T-cells in tumour tissue and the peritoneal cavity. Substantial reductions in suppressive cytokines, including CCL2, CCL17, CCL22 and IL-10, were also noted and were associated with reduced CD4+ CD25+ Foxp3+ Treg recruitment in the tumour. Combination therapy with paclitaxel, however, typical of standard-of-care for patients in palliative care, abolished CXCR3-specific T-cell recruitment stimulated by sitagliptin. Our data suggest that sitagliptin may be suitable as an adjunct therapy for patients between chemotherapy cycles as a novel approach to enhance immunity, optimise T-cell-mediated function and improve overall survival.

  • Cancer Research

Entire CD3ε, δ, and γ humanized mouse to evaluate human CD3-mediated therapeutics.

In Scientific Reports on 3 April 2017 by Ueda, O., Wada, N. A., et al.

T cell-mediated immunotherapy is an attractive strategy for treatment in various disease areas. In this therapeutic approach, the CD3 complex is one of the key molecules to modulate T cell functions; however, in many cases, we cannot evaluate the drug candidates in animal experiments because the therapeutics, usually monoclonal antibodies specific to human CD3, cannot react to mouse endogenous Cd3. Although immunodeficient mice transfused with human hematopoietic stem or precursor cells, known as humanized mice, are available for these studies, mice humanized in this manner are not completely immune competent. In this study we have succeeded in establishing a novel mouse strain in which all the three components of the Cd3 complex - Cd3ε, Cd3δ, and Cd3γ - are replaced by their human counterparts, CD3E, CD3D, and CD3G. Basic immunological assessments have confirmed that this strain of human CD3 EDG-replaced mice are entirely immune competent, and we have also demonstrated that a bispecific antibody that simultaneously binds to human CD3 and a tumor-associated antigen (e.g. ERBB2 or GPC3) can be evaluated in human CD3 EDG-replaced mice engrafted with tumors. Our mouse model provides a novel means to evaluate the in vivo efficacy of human CD3-mediated therapy.

View this product on CiteAb