Product Citations: 80

3 images found

Mucosal antigen-specific T cells are pivotal for pathogen clearance and immune modulation in respiratory infections. Dysregulated T cell responses exacerbate coronavirus disease 2019 severity, marked by cytokine storms and respiratory failure. Despite extensive description in peripheral blood, the characteristics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells in the lungs remain elusive. Here we conducted integrated single-cell profiling of SARS-CoV-2-specific T cells in 122 bronchoalveolar lavage fluid (BALF) and 280 blood samples from 159 patients, including 27 paired BALF and blood samples from 24 patients. SARS-CoV-2-specific T cells were robustly elicited in BALF irrespective of prior vaccination, correlating with diminished viral loads, lessened systemic inflammation and improved respiratory function. SARS-CoV-2-specific T cells in BALF exhibited profound activation, along with proliferative and multi-cytokine-producing capabilities and a glycolysis-driven metabolic signature, which were distinct from those observed in peripheral blood mononuclear cells. After viral clearance, these specific T cells maintained a polyfunctional tissue-resident memory phenotype, highlighting their critical roles in infection control and long-term protection.
© 2025. The Author(s).

  • COVID-19
  • Immunology and Microbiology

A multi-kinase inhibitor screen identifies inhibitors preserving stem-cell-like chimeric antigen receptor T cells.

In Nature Immunology on 1 February 2025 by Song, F., Tsahouridis, O., et al.

Chimeric antigen receptor T cells (CAR T cells) with T stem (TSCM) cell-like phenotypic characteristics promote sustained antitumor effects. We performed an unbiased and automated high-throughput screen of a kinase-focused compound set to identify kinase inhibitors (KIs) that preserve human TSCM cell-like CAR T cells. We identified three KIs, UNC10225387B, UNC10225263A and UNC10112761A, that combined in vitro increased the frequency of CD45RA+CCR7+TCF1hi TSCM cell-like CAR T cells from both healthy donors and patients with cancer. KI-treated CAR T cells showed enhanced antitumor effects both in vitro and in vivo in mouse tumor models. The KI cocktail maintains TSCM cell-like phenotype preferentially in CAR T cells originating from naive T cells and causes transcriptomic changes without arresting T cell activation or modulating the chromatin organization. Specific kinases, ITK, ADCK3, MAP3K4 and CDK13, targeted by the KI cocktail in a dose-dependent manner are directly associated with the preservation of TSCM cell-like CAR T cells. Knockdown of these kinases individually or in combination enriches for TSCM cell-like CAR T cells, but only CAR T cells generated in the presence of the KI cocktail show robust expansion and differentiation on stimulation with tumor cells. Overall, transient pharmacological inhibition of strategically targeted kinases maintains stem-like features in CAR T cells and improves their antitumor activity.
© 2025. The Author(s).

  • Immunology and Microbiology
  • Stem Cells and Developmental Biology

Novel B7-H3 CAR T cells show potent antitumor effects in glioblastoma: a preclinical study.

In Journal for Immunotherapy of Cancer on 25 January 2025 by Inthanachai, T., Boonkrai, C., et al.

B7 homolog 3 (B7-H3), an overexpressed antigen across multiple solid cancers, represents a promising target for CAR T cell therapy. This study investigated the expression of B7-H3 across various solid tumors and developed novel monoclonal antibodies (mAbs) targeting B7-H3 for CAR T cell therapy.
Expression of B7-H3 across various solid tumors was evaluated using RNA-seq data from TCGA, TARGET, and GTEx datasets and by flow cytometry staining. B7-H3-specific mAbs were developed by immunizing mice with human B7-H3, screening with ELISA, and analyzing kinetics with surface plasmon resonance. These mAbs were used to create second-generation CAR constructs, which were evaluated in vitro and in vivo for their antitumor function.
We identified four mAb clones from immunized mice, with three demonstrating high specificity and affinity. The second-generation B7-H3 CAR T cells derived from these mAbs exhibited robust cytotoxicity against B7-H3-positive targets and successfully infiltrated and eliminated tumor spheroids in vitro. In a xenograft mouse model of glioblastoma, these CAR T cells, particularly those derived from clone A2H4, eradicated the primary tumor, and effectively controlled rechallenge tumor, resulting in prolonged survival of the xenograft mice. In vivo T cell trafficking revealed high accumulation and persistence of A2H4-derived CAR T cells at the tumor site.
Our results provide novel B7-H3-targeted CAR T cells with high efficacy, paving the way for clinical translation of solid tumor treatment.
© Author(s) (or their employer(s)) 2025. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ Group.

  • Immunology and Microbiology

Natural monoclonal autoantibodies against HERV-K102 Envelope-TM from SLE patients selectively eliminate autoreactive immune cells and cancer cells

Preprint on BioRxiv : the Preprint Server for Biology on 17 December 2024 by Gong, Q., Li, M., et al.

In sharp contrast to immune dysfunction in cancer, autoimmune diseases such as systemic lupus erythematosus (SLE) exhibit excessive immune reactions characterized by high titers of autoantibodies to HERV-K102-envelope (HERV-K102-Env) neoantigens, which are frequently found in cancer patients but seldom elicit a strong immune response. Here we aim to address whether anti-HERV-K102-Env autoantibodies in SLE can effectively eliminate autoreactive immune cells and cancer cells expressing HERV-K102-Env neoantigens. We established world-first fully human autoantibody phage display library with 3.67x10 8 cfu using peripheral blood mononuclear cells (PBMCs) from SLE patients. Through high-throughput screening, we identified nineteen monoclonal autoantibodies (mAbs) targeting the conserved HERV-K102 Env-TM subunit. The EC50 values of these autoantibodies binding to the HERV-K102 Env-TM subunit ranged from 0.002436 μg/ml to 1.798 μg/ml. Remarkably, eleven of these mAbs not only recognized the HERV-K102 Env-TM glycoprotein on the cell surface but also effectively eliminated autoreactive B, T, and natural killer (NK) cells in SLE, as well as cancer cells. Our findings provide a conceptually new immunotherapy target HERV-K102 Env-TM subunit and open the era of using natural human autoantibodies to treat autoimmune disease and cancers. Several of these monoclonal autoantibodies show promise as potential diagnostic and therapeutic agents, paving the way for innovative approaches to treating SLE and various malignancies.

  • Cancer Research
  • Immunology and Microbiology

Cholesterol promotes IFNG mRNA expression in CD4+ effector/memory cells by SGK1 activation.

In Life Science Alliance on 1 December 2024 by Hanin, A., Comi, M., et al.

IFNγ-secreting T cells are central for the maintenance of immune surveillance within the central nervous system (CNS). It was previously reported in healthy donors that the T-cell environment in the CNS induces distinct signatures related to cytotoxic capacity, CNS trafficking, tissue adaptation, and lipid homeostasis. These findings suggested that the CNS milieu consisting predominantly of lipids mediated the metabolic conditions leading to IFNγ-secreting brain CD4 T cells. Here, we demonstrate that the supplementation of CD4+CD45RO+CXCR3+ cells with cholesterol modulates their function and increases IFNG expression. The heightened IFNG expression was mediated by the activation of the serum/glucocorticoid-regulated kinase (SGK1). Inhibition of SGK1 by a specific enzymatic inhibitor significantly reduces the expression of IFNG Our results confirm the crucial role of lipids in maintaining T-cell homeostasis and demonstrate a putative role of environmental factors to induce effector responses in CD4+ effector/memory cells. These findings offer potential avenues for further research targeting lipid pathways to modulate inflammatory conditions.
© 2024 Hanin et al.

  • FC/FACS
  • Homo sapiens (Human)
  • Genetics
  • Immunology and Microbiology
View this product on CiteAb