Product Citations: 4

Efficient manufacturing and engraftment of CCR5 gene-edited HSPCs following busulfan conditioning in nonhuman primates.

In Molecular Therapy. Methods Clinical Development on 14 September 2023 by Murray, J., Einhaus, T., et al.

Hematopoietic stem cell gene therapy has been successfully used for a number of genetic diseases and is also being explored for HIV. However, toxicity of the conditioning regimens has been a major concern. Here we compared current conditioning approaches in a clinically relevant nonhuman primate model. We first customized various aspects of the therapeutic approach, including mobilization and cell collection protocols, conditioning regimens that support engraftment with minimal collateral damage, and cell manufacturing and infusing schema that reflect and build on current clinical approaches. Through a series of iterative in vivo experiments in two macaque species, we show that busulfan conditioning significantly spares lymphocytes and maintains a superior immune response to mucosal challenge with simian/human immunodeficiency virus, compared to total body irradiation and melphalan regimens. Comparative mobilization experiments demonstrate higher cell yield relative to our historical standard, primed bone marrow and engraftment of CRISPR-edited hematopoietic stem and progenitor cells (HSPCs) after busulfan conditioning. Our findings establish a detailed workflow for preclinical HSPC gene therapy studies in the nonhuman primate model, which in turn will support testing of novel conditioning regimens and more advanced HSPC gene editing techniques tailored to any disease of interest.
© 2023 The Authors.

  • FC/FACS

In Vivo Hematopoietic Stem Cell Gene Therapy for SARS-CoV2 Infection Using a Decoy Receptor.

In Human Gene Therapy on 1 April 2022 by Wang, H., Li, C., et al.

While SARS-CoV2 vaccines have shown an unprecedented success, the ongoing emergence of new variants and necessity to adjust vaccines justify the development of alternative prophylaxis and therapy approaches. Hematopoietic stem cell (HSC) gene therapy using a secreted CoV2 decoy receptor protein (sACE2-Ig) would involve a one-time intervention resulting in long-term protection against airway infection, viremia, and extrapulmonary symptoms. We recently developed a technically simple and portable in vivo hematopoietic HSC transduction approach that involves HSC mobilization from the bone marrow into the peripheral blood stream and the intravenous injection of an integrating, helper-dependent adenovirus (HDAd5/35++) vector system. Considering the abundance of erythrocytes, in this study, we directed sACE2-Ig expression to erythroid cells using strong β-globin transcriptional regulatory elements. We performed in vivo HSC transduction of CD46-transgenic mice with an HDAd-sACE2-Ig vector. Serum sACE2-Ig levels reached 500-1,300 ng/mL after in vivo selection. At 22 weeks, we used genetically modified HSCs from these mice to substitute the hematopoietic system in human ACE2-transgenic mice, thus creating a model that is susceptible to SARS-CoV2 infection. Upon challenge with a lethal dose of CoV2 (WA-1), sACE2-Ig expressed from erythroid cells of test mice diminishes infection sequelae. Treated mice lost significantly less weight, had less viremia, and displayed reduced cytokine production and lung pathology. The second objective of this study was to assess the safety of in vivo HSC transduction and long-term sACE2-Ig expression in a rhesus macaque. With appropriate cytokine prophylaxis, intravenous injection of HDAd-sACE2-Ig into the mobilized animal was well tolerated. In vivo transduced HSCs preferentially localized to and survived in the spleen. sACE2-Ig expressed from erythroid cells did not affect erythropoiesis and the function of erythrocytes. While these pilot studies are promising, the antiviral efficacy of the approach has to be improved, for example, by using of decoy receptors with enhanced neutralizing capacity and/or expression of multiple antiviral effector proteins.

  • FC/FACS
  • COVID-19
  • Genetics
  • Immunology and Microbiology
  • Stem Cells and Developmental Biology

AMD3100 redosing fails to repeatedly mobilize hematopoietic stem cells in the nonhuman primate and humanized mouse.

In Experimental Hematology on 1 January 2021 by Samuelson, C., Radtke, S., et al.

AMD3100 (plerixafor) is a vital component of many clinical and preclinical transplant protocols, facilitating harvest of hematopoietic stem and progenitor cells through mobilization into the peripheral blood circulation. Repeat mobilization with AMD3100 is also necessary for many patients with suboptimal first stem cell collection or those requiring repeat transplantation. In this study we investigated the mobilization efficacy of repeated AMD3100 dosages in the nonhuman primate and humanized mouse models. In nonhuman primates, we observed effective mobilization after the first AMD3100 administration but a significantly poorer response in CD34+ and hematopoietic stem cell-enriched CD90+ cells with subsequent doses of the drug. A similar loss of efficacy with repeated administration was noted in immunodeficient mice engrafted with human CD34+ cells, in whom the total human white cell population, and particularly human hematopoietic stem and progenitor cells, mobilized significantly less effectively following a second AMD3100 administration when compared with the first dose. Together, our results are expected to inform future mobilization protocols for the purposes of peripheral blood hematopoietic stem cell extraction or for applications in which hematopoietic stem cells must be made accessible for in vivo-delivered gene targeting agents.
Copyright © 2020 ISEH -- Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  • Cardiovascular biology
  • Stem Cells and Developmental Biology

Endothelial Cells Promote Expansion of Long-Term Engrafting Marrow Hematopoietic Stem and Progenitor Cells in Primates.

In Stem Cells Translational Medicine on 1 March 2017 by Gori, J. L., Butler, J. M., et al.

Successful expansion of bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs) would benefit many HSPC transplantation and gene therapy/editing applications. However, current expansion technologies have been limited by a loss of multipotency and self-renewal properties ex vivo. We hypothesized that an ex vivo vascular niche would provide prohematopoietic signals to expand HSPCs while maintaining multipotency and self-renewal. To test this hypothesis, BM autologous CD34+ cells were expanded in endothelial cell (EC) coculture and transplanted in nonhuman primates. CD34+ C38- HSPCs cocultured with ECs expanded up to 17-fold, with a significant increase in hematopoietic colony-forming activity compared with cells cultured with cytokines alone (colony-forming unit-granulocyte-erythroid-macrophage-monocyte; p < .005). BM CD34+ cells that were transduced with green fluorescent protein lentivirus vector and expanded on ECs engrafted long term with multilineage polyclonal reconstitution. Gene marking was observed in granulocytes, lymphocytes, platelets, and erythrocytes. Whole transcriptome analysis indicated that EC coculture altered the expression profile of 75 genes in the BM CD34+ cells without impeding the long-term engraftment potential. These findings show that an ex vivo vascular niche is an effective platform for expansion of adult BM HSPCs. Stem Cells Translational Medicine 2017;6:864-876.
© 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  • FC/FACS
  • Macaca mulatta (Rhesus Monkey)
  • Stem Cells and Developmental Biology
View this product on CiteAb