Product Citations: 13

T-bet+ CXCR3+ B cells drive hyperreactive B-T cell interactions in multiple sclerosis.

In Cell Reports Medicine on 18 March 2025 by Jelcic, I., Naghavian, R., et al.

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS). Self-peptide-dependent autoproliferation (AP) of B and T cells is a key mechanism in MS. Here, we show that pro-inflammatory B-T cell-enriched cell clusters (BTECs) form during AP and mirror features of a germinal center reaction. T-bet+CXCR3+ B cells are the main cell subset amplifying and sustaining their counterpart Th1 cells via interferon (IFN)-γ and are present in highly inflamed meningeal tissue. The underlying B cell activation signature is reflected by epigenetic modifications and receptor-ligand interactions with self-reactive T cells. AP+ CXCR3+ B cells show marked clonal evolution from memory to somatically hypermutated plasmablasts and upregulation of IFN-γ-related genes. Our data underscore a key role of T-bet+CXCR3+ B cells in the pathogenesis of MS in both the peripheral immune system and the CNS compartment, and thus they appear to be involved in both early relapsing-remitting disease and the chronic stage.
Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

Screening for effective vaccines requires broad studies on their immunogenicity in vitro and ex vivo . We used a PBMC-based system to assess changes in CD4+ T cells, CD8+ T cells, and CD19+ B cells upon stimulation with different combinations of antigens and adjuvants. We studied the activation mechanism using flow cytometry and two different adenoviral adjuvants characterized by the presence or absence of costimulatory ligands for the ICOS and CD40 receptors. Our studies identified the cellular targets and molecular mechanisms driving ongoing switched-antibody diversification. Class-switched memory B cells were the main precursor cells (95.03% ± 0.38 vs. mock 82.33% ± 0.45, P < 0.05) after treatment with the immunogenic formula: adenovirus armed (MIX1) or not (MIX2) with the ICOS and CD40 ligand, the recombinant receptor binding domain (rRBD), and Lentifect™ SARS-CoV-2 spike-pseudotyped lentivirus (GeneCopoeia, USA). Bcell class-switching towards the IgG+IgM+- positive phenotypes was noted (~50-fold increase vs. mock, P < 0.05). A significant increase was observed in the CD8+TEM population of the MIX1 (~2-fold, P < 0.05) and MIX2 (~4.7-fold, P < 0.05) treated samples. CD8+TEMRA increased when PBMCs were treated with MIX2 (9.63% ± 0.90, P < 0.05) vs. mock (2.63% ± 1.96). Class-switched memory B cells were the dominant antigen-specific cells in primary reactions. We indicated a correlation between the protection offered by vaccine regimens and their ability to induce high frequencies of multifunctional T cells.
© 2024 Institute of Bioorganic Chemistry, Polish Academy of Sciences.

  • FC/FACS
  • COVID-19
  • Immunology and Microbiology

Immunoglobulin (Ig) bacterial coating has been described in the gastrointestinal tract and linked to inflammatory bowel disease; however, little is known about Ig coating of vaginal bacteria and whether it plays a role in vaginal health including bacterial vaginosis (BV). We examined Ig coating in 18 women with symptomatic BV followed longitudinally before, 1 week, and 1 month after oral metronidazole treatment. Immunoglobulin A (IgA) and/or immunoglobulin G (IgG) coating of vaginal bacteria was assessed by flow cytometry, and Ig coated and uncoated bacteria were sorted and characterized using 16S rRNA sequencing. Despite higher levels of IgG compared to IgA in cervicovaginal fluid, the predominant Ig coating the bacteria was IgA. The majority of bacteria were uncoated at all visits, but IgA coating significantly increased after treatment for BV. Despite similar amounts of uncoated and IgA coated majority taxa ( >1% total) across all visits, there was preferential IgA coating of minority taxa (0.2%-1% total) associated with BV including Sneathia, several Prevotella species, and others. At the time of BV, we identified a principal component (PC) driven by proinflammatory mediators that correlated positively with an uncoated BV-associated bacterial community and negatively with an IgA coated protective Lactobacillus bacterial community. The preferential coating of BV-associated species, increase in coating following metronidazole treatment, and positive correlation between uncoated BV-associated species and inflammation suggest that coating may represent a host mechanism designed to limit bacterial diversity and reduce inflammatory responses. Elucidating the role of Ig coating in vaginal mucosal immunity may promote new strategies to prevent recurrent BV.

  • Homo sapiens (Human)
  • Immunology and Microbiology

Conjugation of HIV-1 envelope to hepatitis B surface antigen alters vaccine responses in rhesus macaques.

In NPJ Vaccines on 24 November 2023 by Nettere, D., Unnithan, S., et al.

An effective HIV-1 vaccine remains a critical unmet need for ending the AIDS epidemic. Vaccine trials conducted to date have suggested the need to increase the durability and functionality of vaccine-elicited antibodies to improve efficacy. We hypothesized that a conjugate vaccine based on the learned response to immunization with hepatitis B virus could be utilized to expand T cell help and improve antibody production against HIV-1. To test this, we developed an innovative conjugate vaccine regimen that used a modified vaccinia virus Ankara (MVA) co-expressing HIV-1 envelope (Env) and the hepatitis B virus surface antigen (HBsAg) as a prime, followed by two Env-HBsAg conjugate protein boosts. We compared the immunogenicity of this conjugate regimen to matched HIV-1 Env-only vaccines in two groups of 5 juvenile rhesus macaques previously immunized with hepatitis B vaccines in infancy. We found expansion of both HIV-1 and HBsAg-specific circulating T follicular helper cells and elevated serum levels of CXCL13, a marker for germinal center activity, after boosting with HBsAg-Env conjugate antigens in comparison to Env alone. The conjugate vaccine elicited higher levels of antibodies binding to select HIV Env antigens, but we did not observe significant improvement in antibody functionality, durability, maturation, or B cell clonal expansion. These data suggests that conjugate vaccination can engage both HIV-1 Env and HBsAg specific T cell help and modify antibody responses at early time points, but more research is needed to understand how to leverage this strategy to improve the durability and efficacy of next-generation HIV vaccines.
© 2023. The Author(s).

  • FC/FACS
  • Immunology and Microbiology

Infants and children infected with human immunodeficiency virus (HIV)-1 have been shown to develop neutralizing antibodies (nAbs) against heterologous HIV-1 strains, characteristic of broadly nAbs (bnAbs). Thus, having a neonatal model for the induction of heterologous HIV-1 nAbs may provide insights into the mechanisms of neonatal bnAb development. Here, we describe a neonatal model for heterologous HIV-1 nAb induction in pathogenic simian-HIV (SHIV)-infected rhesus macaques (RMs). Viral envelope (env) evolution showed mutations at multiple sites, including nAb epitopes. All 13 RMs generated plasma autologous HIV-1 nAbs. However, 8/13 (62%) RMs generated heterologous HIV-1 nAbs with increasing potency over time, albeit with limited breadth, and mapped to multiple nAb epitopes, suggestive of a polyclonal response. Moreover, plasma heterologous HIV-1 nAb development was associated with antigen-specific, lymph-node-derived germinal center activity. We define a neonatal model for heterologous HIV-1 nAb induction that may inform future pediatric HIV-1 vaccines for bnAb induction in infants and children.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology
View this product on CiteAb