Product Citations: 3

Mesenchymal stromal cells improve the transplantation outcome of CRISPR-Cas9 gene-edited human HSPCs.

In Molecular Therapy on 4 January 2023 by Crippa, S., Conti, A., et al.

Mesenchymal stromal cells (MSCs) have been employed in vitro to support hematopoietic stem and progenitor cell (HSPC) expansion and in vivo to promote HSPC engraftment. Based on these studies, we developed an MSC-based co-culture system to optimize the transplantation outcome of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene-edited (GE) human HSPCs. We show that bone marrow (BM)-MSCs produce several hematopoietic supportive and anti-inflammatory factors capable of alleviating the proliferation arrest and mitigating the apoptotic and inflammatory programs activated in GE-HSPCs, improving their expansion and clonogenic potential in vitro. The use of BM-MSCs resulted in superior human engraftment and increased clonal output of GE-HSPCs contributing to the early phase of hematological reconstitution in the peripheral blood of transplanted mice. In conclusion, our work poses the biological bases for a novel clinical use of BM-MSCs to promote engraftment of GE-HSPCs and improve their transplantation outcome.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.

Infection with transmissible gastroenteritis virus (TGEV) has been associated with villous atrophy within 48 h, which seriously disrupts intestinal homeostasis. However, the underlying mechanisms remain elusive. In this study, we found that TGEV infection severely disrupted intestinal homeostasis via inhibition of self-renewal and differentiation in Lgr5 intestinal stem cells (ISCs). Profoundly, TGEV-encoded NSP10/NSP16 protein complex-mediated the inactivation of Notch signaling provided a mechanistic explanation for this phenomenon. Initial invasions by TGEV-targeted Paneth cells through aminopeptidase N (APN) receptor, then inducing mitochondrial damage and ROS generation in them, ultimately causing Paneth cell decrease and loss of Notch factors (DII4 and Hes5), which are essential for Lgr5 ISCs self-renewal and differentiation. Interestingly, loss of Notch signaling induced goblet cells differentiation at the cost of absorptive enterocytes and promoted mucins secretion, which accelerated TGEV replication. Therefore, the more differentiation of goblet cells, the greater TGEV infection in jejunum. These results provide a detailed mechanistic pathway by which villous atrophy sharply occurs in TGEV-infected jejunum within 48 h. Thus, the pathogenesis of TGEV can be described as a "bottom up scenario", which is contrary to the traditional "top down" hypothesis. Together, our findings provide a potential link between diarrheal virus infection and crypt cells response that regulates Paneth cells function and Lgr5 ISCs fate and could be exploited for therapeutic application.

  • FC/FACS
  • Cell Biology
  • Immunology and Microbiology
  • Stem Cells and Developmental Biology

Bone marrow stromal cells from β-thalassemia patients have impaired hematopoietic supportive capacity.

In The Journal of Clinical Investigation on 25 February 2019 by Crippa, S., Rossella, V., et al.

The human bone marrow (BM) niche contains a population of mesenchymal stromal cells (MSCs) that provide physical support and regulate hematopoietic stem cell (HSC) homeostasis. β-Thalassemia (BT) is a hereditary disorder characterized by altered hemoglobin beta-chain synthesis amenable to allogeneic HSC transplantation and HSC gene therapy. Iron overload (IO) is a common complication in BT patients affecting several organs. However, data on the BM stromal compartment are scarce.
MSCs were isolated and characterized from BM aspirates of healthy donors (HDs) and BT patients. The state of IO was assessed and correlated with the presence of primitive MSCs in vitro and in vivo. Hematopoietic supportive capacity of MSCs was evaluated by transwell migration assay and 2D coculture of MSCs with human CD34+ HSCs. In vivo, the ability of MSCs to facilitate HSC engraftment was tested in a xenogenic transplant model, whereas the capacity to sustain human hematopoiesis was evaluated in humanized ossicle models.
We report that, despite iron chelation, BT BM contains high levels of iron and ferritin, indicative of iron accumulation in the BM niche. We found a pauperization of the most primitive MSC pool caused by increased ROS production in vitro which impaired MSC stemness properties. We confirmed a reduced frequency of primitive MSCs in vivo in BT patients. We also discovered a weakened antioxidative response and diminished expression of BM niche-associated genes in BT-MSCs. This caused a functional impairment in MSC hematopoietic supportive capacity in vitro and in cotransplantation models. In addition, BT-MSCs failed to form a proper BM niche in humanized ossicle models.
Our results suggest an impairment in the mesenchymal compartment of BT BM niche and highlight the need for novel strategies to target the niche to reduce IO and oxidative stress before transplantation.
This work was supported by the SR-TIGET Core grant from Fondazione Telethon and by Ricerca Corrente.

  • FC/FACS
  • Homo sapiens (Human)
View this product on CiteAb