Product Citations: 5

SARS-CoV-2 induces human plasmacytoid predendritic cell diversification via UNC93B and IRAK4.

In The Journal of Experimental Medicine on 5 April 2021 by Onodi, F., Bonnet-Madin, L., et al.

Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here we have isolated primary SARS-CoV-2 viral strains and studied their interaction with human plasmacytoid predendritic cells (pDCs), a key player in antiviral immunity. We show that pDCs are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus-induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2-induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2-induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN-dependent immunity against SARS-CoV-2 infection.
© 2021 Onodi et al.

  • COVID-19

Immune responses differ between women and men, and type I interferon (IFN) responses following Toll-like receptor 7 (TLR7) stimulation are higher in women. The precise mechanisms driving these sex differences in immunity are unknown. To investigate possible genetic factors, we quantify escape from X chromosome inactivation (XCI) for TLR7 and four other genes (RPS6KA3, CYBB, BTK, and IL13RA1) at the single plasmacytoid dendritic cell (pDC) level. We observe escape from XCI for all investigated genes, leading to biallelic expression patterns. pDCs with biallelic gene expression have significantly higher mRNA levels of the respective genes. Unstimulated pDCs with biallelic TLR7 expression exhibit significantly higher IFNα/β mRNA levels, and IFNα exposure results in significantly increased IFNα/β protein production by pDCs. These results identify unanticipated heterogeneity in escape from XCI of several genes in pDCs and highlight the important contribution of X chromosome factors to sex differences in type I IFN responses, which might explain observed sex differences in human diseases.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.

  • Homo sapiens (Human)
  • Genetics

Ageing is associated with a changing immune system, leading to inflammageing (increased levels of inflammation markers in serum) and immunosenescence (reduced immune cells and reduced responses towards pathogens). This results in reduced vaccination responses and increased infections in elderly. Much is known about the adaptive immune system upon ageing, but less is known about the innate immune system. Therefore, the aim of this study was to compare innate immune function of Toll like receptor (TLR)-mediated responses between elderly and young adult women. To this end, elderly and young adult women were compared to study the effect of ageing on the relative prevalence and reactivity to TLR-mediated responses of myeloid- and plasmacytoid dendritic cells (mDC, pDC). In addition, TLR expression and inflammatory markers in serum were investigated. Elderly women had reduced numbers of circulating pDCs. In addition, pDCs and mDCs of elderly women responded differently towards TLR stimulation, especially TLR7/8 mediated stimulation was reduced, compared to young adults. In serum, markers involved in inflammation were generally increased in elderly. In conclusion, this study confirms and extends the knowledge about immunosenescence and inflammageing on innate immunity in elderly women.

  • Immunology and Microbiology

During aging the immune system is dysregulated. Especially plasmacytoid dendritic cells (pDCs) and myeloid DCs (mDCs) have reduced Toll like receptor (TLR)-mediated responses resulting in increased susceptibility to infections. Consumption of bovine lactoferrin (bLF) has been shown to reduce infections with viruses. Galacto-oligosacharides (GOS) and vitamin D are associated with reduced pro-inflammatory cytokine levels in serum, and increased TLR7/8 responses, respectively. A double-blind placebo-controlled nutritional intervention study in elderly women was performed, to investigate the potential of bLF, GOS, and vitamin D to restore TLR responsiveness of pDCs and mDCs and to reduce inflammatory markers in serum. The nutritional intervention group (n = 15) received bLF for 3 weeks, followed by 3 weeks of bLF + GOS, and subsequently 3 weeks of bLF + GOS + vitamin D. The placebo group (n = 15) received maltodextrin for 9 weeks. Every 3 weeks, blood was collected and TLR responses of pDCs and mDCs, and inflammation-related markers in serum were measured. After 3 weeks of bLF supplementation, increased TLR7/8 and TLR1/2 responses were observed in pDCs of the nutritional intervention group compared to the placebo group. When the effects of the entire nutritional intervention were investigated, increased TLR1/2 mediated responses in mDCs were observed, and in serum sVCAM tended to decrease. Finally, based on the RAND-36 questionnaire physical function tended to improve in the intervention group. Since especially TLR7-mediated responses in pDCs were enhanced after bLF supplementation compared to placebo, this suggests that bLF may contribute to antiviral responses mediated by pDC in elderly women.Clinical trial registry number: NCT03026244, clinicaltrials.gov.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology
  • Veterinary Research

Metabolic Phenotypes of Response to Vaccination in Humans.

In Cell on 18 May 2017 by Li, S., Sullivan, N. L., et al.

Herpes zoster (shingles) causes significant morbidity in immune compromised hosts and older adults. Whereas a vaccine is available for prevention of shingles, its efficacy declines with age. To help to understand the mechanisms driving vaccinal responses, we constructed a multiscale, multifactorial response network (MMRN) of immunity in healthy young and older adults immunized with the live attenuated shingles vaccine Zostavax. Vaccination induces robust antigen-specific antibody, plasmablasts, and CD4+ T cells yet limited CD8+ T cell and antiviral responses. The MMRN reveals striking associations between orthogonal datasets, such as transcriptomic and metabolomics signatures, cell populations, and cytokine levels, and identifies immune and metabolic correlates of vaccine immunity. Networks associated with inositol phosphate, glycerophospholipids, and sterol metabolism are tightly coupled with immunity. Critically, the sterol regulatory binding protein 1 and its targets are key integrators of antibody and T follicular cell responses. Our approach is broadly applicable to study human immunity and can help to identify predictors of efficacy as well as mechanisms controlling immunity to vaccination.
Copyright © 2017 Elsevier Inc. All rights reserved.

  • FC/FACS
  • Homo sapiens (Human)
  • Biochemistry and Molecular biology
  • Cell Biology
View this product on CiteAb