Product Citations: 12

Modulating immune cell fate and inflammation through CRISPR-mediated DNA methylation editing.

In Science Advances on 18 July 2025 by Valcarcel, G., Lazarenkov, A., et al.

Immune cell differentiation and activation are associated with widespread DNA methylation changes; however, the causal relationship between these changes and their impact in shaping cell fate decisions still needs to be fully elucidated. Here, we conducted a genome-wide analysis to investigate the relationship between DNA methylation and gene expression at gene regulatory regions in human immune cells. By using CRISPR-dCas9-TET1 and -DNMT3A epigenome editing tools, we successfully established a cause-and-effect relationship between the DNA methylation levels of the promoter of the interleukin-1 receptor antagonist (IL1RN) gene and its expression. We observed that modifying the DNA methylation status of the IL1RN promoter is sufficient to alter human myeloid cell fate and change the cellular response to inflammatory and pathogenic stimuli. Collectively, our findings demonstrate the potential of targeting specific DNA methylation events to directly modulate immune and inflammatory responses, providing a proof of principle for intervening in a broad range of inflammation-related diseases.

  • Genetics
  • Immunology and Microbiology
  • Stem Cells and Developmental Biology

Enhancing human NK cell antitumor function by knocking out SMAD4 to counteract TGFβ and activin A suppression.

In Nature Immunology on 1 April 2025 by Rea, A., Santana-Hernández, S., et al.

Transforming growth factor beta (TGFβ) and activin A suppress natural killer (NK) cell function and proliferation, limiting the efficacy of adoptive NK cell therapies. Inspired by the partial resistance to TGFβ of NK cells with SMAD4 haploinsufficiency, we used CRISPR-Cas9 for knockout of SMAD4 in human NK cells. Here we show that SMAD4KO NK cells were resistant to TGFβ and activin A inhibition, retaining their cytotoxicity, cytokine secretion and interleukin-2/interleukin-15-driven proliferation. They showed enhanced tumor penetration and tumor growth control, both as monotherapy and in combination with tumor-targeted therapeutic antibodies. Notably, SMAD4KO NK cells outperformed control NK cells treated with a TGFβ inhibitor, underscoring the benefit of maintaining SMAD4-independent TGFβ signaling. SMAD4KO conferred TGFβ resistance across diverse NK cell platforms, including CD19-CAR NK cells, stem cell-derived NK cells and ADAPT-NK cells. These findings position SMAD4 knockout as a versatile and compelling strategy to enhance NK cell antitumor activity, providing a new avenue for improving NK cell-based cancer immunotherapies.
© 2025. The Author(s).

  • Immunology and Microbiology

Modulating immune cell fate and inflammation through CRISPR-mediated DNA methylation editing

Preprint on BioRxiv : the Preprint Server for Biology on 10 July 2024 by Valcárcel, G., López-Rubio, A. V., et al.

ABSTRACT DNA methylation is traditionally associated with gene silencing, but its causal relationship and role in shaping cell fate decisions still need to be fully elucidated. Here, we conducted a genome-wide analysis to investigate the relationship between DNA methylation and gene expression at gene regulatory regions in human immune cells. By utilizing CRISPR-dCas9 DNA methylation editing tools, we successfully established a cause-and-effect relationship between the methylation levels of the promoter of the Interleukin1-receptor antagonist ( IL1RN ) gene and its expression. Notably, we observed that modifying the DNA methylation status of the IL1RN promoter is sufficient to alter the acquisition of the human myeloid cell fate and change the cellular response to inflammatory stimuli, resulting in abnormal cytokine release and distinctive capacity to support cancer growth.

  • Genetics
  • Immunology and Microbiology
  • Stem Cells and Developmental Biology

Prime-2-CoV_Beta is a novel Orf virus (ORFV)-based COVID-19 vaccine candidate expressing both the nucleocapsid and spike proteins of SARS-CoV-2 with the receptor-binding domain (RBD) of the Beta strain. This candidate was shown to be safe and immunogenic in a first-in-human Phase I clinical trial. With the shift in the immune landscape toward the Omicron variant and the widespread vaccine- and/or infection-derived immunity, further pre-clinical research was needed to characterize Prime-2-CoV. Here, we quantified the humoral and cellular response to Prime-2-CoV_Beta in pre-immunized mice and compared the protective efficacy of mono- and bivalent variant-based Prime-2-CoV vaccine candidates in hamsters. Prime-2-CoV_Beta induced robust humoral and cellular immune responses in naïve animals but did not further boost antibody titers in the tested setting when given as repeat booster at short interval. We furthermore showed that Prime-2-CoV_Beta-based mono- and bivalent immunization strategies produced comparable immunogenicity and protection from infection. Our results highlight the potential of the Orf virus as a vaccine platform against SARS-CoV-2 and potentially other infectious viruses.

  • COVID-19
  • Immunology and Microbiology

Tumor-associated macrophages trigger MAIT cell dysfunction at the HCC invasive margin.

In Cell on 17 August 2023 by Ruf, B., Bruhns, M., et al.

Mucosal-associated invariant T (MAIT) cells represent an abundant innate-like T cell subtype in the human liver. MAIT cells are assigned crucial roles in regulating immunity and inflammation, yet their role in liver cancer remains elusive. Here, we present a MAIT cell-centered profiling of hepatocellular carcinoma (HCC) using scRNA-seq, flow cytometry, and co-detection by indexing (CODEX) imaging of paired patient samples. These analyses highlight the heterogeneity and dysfunctionality of MAIT cells in HCC and their defective capacity to infiltrate liver tumors. Machine-learning tools were used to dissect the spatial cellular interaction network within the MAIT cell neighborhood. Co-localization in the adjacent liver and interaction between niche-occupying CSF1R+PD-L1+ tumor-associated macrophages (TAMs) and MAIT cells was identified as a key regulatory element of MAIT cell dysfunction. Perturbation of this cell-cell interaction in ex vivo co-culture studies using patient samples and murine models reinvigorated MAIT cell cytotoxicity. These studies suggest that aPD-1/aPD-L1 therapies target MAIT cells in HCC patients.
Published by Elsevier Inc.

  • Cancer Research
View this product on CiteAb