Product Citations: 29

B cells modulate lung antiviral inflammatory responses via the neurotransmitter acetylcholine.

In Nature Immunology on 1 May 2025 by Cembellin-Prieto, A., Luo, Z., et al.

The rapid onset of innate immune defenses is critical for early control of viral replication in an infected host and yet it can also lead to irreversible tissue damage, especially in the respiratory tract. Sensitive regulators must exist that modulate inflammation, while controlling the infection. In the present study, we identified acetylcholine (ACh)-producing B cells as such early regulators. B cells are the most prevalent ACh-producing leukocyte population in the respiratory tract demonstrated with choline acetyltransferase (ChAT)-green fluorescent protein (GFP) reporter mice, both before and after infection with influenza A virus. Mice lacking ChAT in B cells, disabling their ability to generate ACh (ChatBKO), but not those lacking ChAT in T cells, significantly, selectively and directly suppressed α7-nicotinic-ACh receptor-expressing interstitial, but not alveolar, macrophage activation and their ability to secrete tumor necrosis factor (TNF), while better controlling virus replication at 1 d postinfection. Conversely, TNF blockade via monoclonal antibody treatment increased viral loads at that time. By day 10 of infection, ChatBKO mice showed increased local and systemic inflammation and reduced signs of lung epithelial repair despite similar viral loads and viral clearance. Thus, B cells are key participants of an immediate early regulatory cascade that controls lung tissue damage after viral infection, shifting the balance toward reduced inflammation at the cost of enhanced early viral replication.
© 2025. The Author(s).

  • Immunology and Microbiology

Enhanced HIV immune responses elicited by an apoptotic single-cycle SHIV lentivector DNA vaccine.

In Frontiers in Cellular and Infection Microbiology on 28 April 2025 by Bose, D., Rogers, K. A., et al.

HIV remains a major public health issue in spite of antiretroviral therapy (ART). An innovative vaccine that can induce long-lasting and effective immunity is required to curb the persistently high numbers of new infections worldwide.
A novel DNA vaccine was generated using a Simian-Human Immunodeficiency Virus (SHIV) backbone with a Zambian T/F clade C envelope and under the control of the caprine arthritis encephalitis virus long terminal repeats (LTRs) for constitutive expression. Due to the deleted integrase, this DNA vaccine "CSH-DIN-T/F Z331" performs only a single replication cycle. To increase immunogenicity, the co-expression of apoptotic genes (BAX, BAK, or caspase 8) incorporated at the end of Pol was tested to promote the release of apoptotic bodies taken up by dendritic cells leading to cross-presentation of antigen. The three vaccines (CSH-DIN-T/F Z331-BAX, CSH-DIN-T/F Z331-BAK, and CSH-DIN-T/F Z331-Cas8) were tested in vitro for expression and in vivo in BALB/cJ mice for immunogenicity.
Transduced HEK293 cells co-cultured with CEMx174 confirmed the single replication cycle of the DNA vaccine and the induction of apoptosis by CSH-DIN-T/F Z331-Cas8 based on Annexin V expression. BALB/cJ mice were immunized with a combined intramuscular + intradermal/electroporation approach. Intracellular cytokine staining (ICS) from splenocytes collected 12 weeks post-prime/6 weeks post-boost demonstrated a clear superiority of caspase 8 expressing construct over the others, with higher proportions of IFN-γ-, IL-2-, and IL-21-producing CD8 T cells specific to Env, Gag, and Nef. The kinetics of immune response after various immunization schedules were also investigated.
This novel single-cycle DNA vaccine with apoptotic genes demonstrated an enhanced immunogenicity primarily for antigen-specific CD8+ T-cell responses.
Copyright © 2025 Bose, Rogers, Shirreff, Chebloune and Villinger.

  • Genetics
  • Immunology and Microbiology

Novel method for detection of Aβ and Iso-D7-Aβ N-terminus-specific B cells and Iso-D7-Aβ-specific antibodies.

In Biology Methods and Protocols on 20 January 2025 by Kolobova, E. A., Petrushanko, I. Y., et al.

Alzheimer's disease (AD) is a multifactorial systemic disease that is triggered, at least in part, by the accumulation of β-amyloid (Aβ) peptides in the brain, but it also depends on immune system-mediated regulation. Recent studies suggest that B cells may play a role in AD development and point to the accumulation of clonally expanded B cells in AD patients. However, the specificity of the clonally expanded B cells is unknown, and the contribution of Aβ-specific B cells to AD pathology development is unclear. In this study, we have developed a novel method to identify Aβ-specific B cells by flow cytometry using fluorescent tetramers. The suggested method also enables the identification of B-cell clones specific to a more pathology-provoking form of Aβ with an isomerized Asp7 residue (Iso-D7-Aβ) that accumulates in elderly people and in AD patients. The method has been verified using mice immunized with antigens containing the isomerized or non-isomerized Aβ N-terminus peptides. In addition, we describe a new method for the detection of Iso-D7-Aβ-specific antibodies, which was tested on mouse serum. These methods are of potential importance in research aimed at studying AD and may be also utilized for diagnostic and therapeutic purposes.
© The Author(s) 2025. Published by Oxford University Press.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Despite the high sepsis-associated mortality, effective and specific treatments remain limited. Using conventional antibiotics as TIENAM (imipenem and cilastatin sodium for injection, TIE) is challenging due to increasing bacterial resistance, diminishing their efficacy and leading to adverse effects. We previously found that aloe-emodin (AE) exerts therapeutic effects on sepsis by reducing systemic inflammation and regulating the gut microbiota. Here, we investigated whether administering AE and TIE post-sepsis onset, using a cecal ligation and puncture (CLP)-induced sepsis model, extends survival and improves physiological functions. Survival rates, inflammatory cytokines, tissue damage, immune cell populations, ascitic fluid microbiota, and key signaling pathways were assessed. Combining AE and TIE significantly enhanced survival rates, and reduced inflammation and bacterial load in septic mice, indicating potent antimicrobial properties. Moreover, substantial improvements in survival rates of AE + TIE-treated mice (10% to 60%) within 168 h were observed relative to the CLP group. This combination therapy also effectively modulated inflammatory marker (interleukin [IL]-6, IL-1β, and tumor necrosis factor [TNF]-α) levels and immune cell counts by decreasing those of B, NK, and TNFR2+ Treg cells, while increasing that of CD8+ T cells; alleviated tissue damage; reduced bacterial load in the peritoneal cavity; and suppressed the NF-κB signaling pathway. We also observed a significantly altered peritoneal cavity microbiota composition post-treatment, characterized by reduced pathogenic bacteria (Bacteroides) abundance. Our findings underscore the potential of AE + TIE in treating sepsis, and encourage further research and possible clinical implementations to surmount the limitations of TIE and amplify the therapeutic potential of AE.
Copyright © 2024 Su, Deng, Hu, Lin, Xie, Ye, Lin, Zhou, Wu and Zheng.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Virus replication is not required for oncolytic bovine herpesvirus-1 immunotherapy.

In Molecular Therapy. Oncology on 19 December 2024 by Baracuhy, E. M., Cormier, O., et al.

Oncolytic viruses are a promising approach for cancer treatment where viruses selectively target and kill cancer cells while also stimulating an immune response. Among viruses with this ability, bovine herpesvirus-1 (BoHV-1) has several advantages, including observations suggesting it may not require viral replication for its anti-cancer effects. We previously demonstrated that binding and penetration of enveloped virus particles are sufficient to trigger intrinsic and innate immune signaling in normal cells, while other groups have published the efficacy of non-replicating viruses as viable immunotherapies in different cancer models. In this work, we definitively show that live and UV-inactivated (UV) (non-replicating) BoHV-1-based regimens extend survival of tumor-bearing mice to similar degrees and induce infiltration of similar immune cell populations, with the exception of neutrophils. Transcriptomic analysis of tumors treated with either live or UV BoHV-1-based regimens revealed similar pathway enrichment and a subset of overlapping differentially regulated genes, suggesting live and UV BoHV-1 have similar mechanisms of activity. Last, we present a gene signature across our in vitro and in vivo models that could potentially be used to validate new BoHV-1 therapeutics. This work contributes to the growing body of literature showing that replication may not be necessary for therapeutic efficacy of viral immunotherapies.
© 2024 The Author(s).

  • Immunology and Microbiology
  • Veterinary Research
View this product on CiteAb