Product Citations: 81

Single-cell transcriptional analysis reveals allergen-specific signatures in human γδ T cells.

In JCI Insight on 9 June 2025 by Kearns, K., Lewis, S. A., et al.

The role of gamma-delta T (γδ T) cells in immune responses to common allergens is poorly understood. Here, we utilized single-cell (sc) transcriptomic analysis of allergen-reactive γδ T cells in humans to characterize the transcriptional landscapes and TCR repertoires in response to cockroach (CR) and mouse (MO) allergens. Using a potentially novel activation-induced marker (AIM) assay that allows detection of γδ T cells combined with scRNA sequencing and TCR repertoire analysis, we identified both shared and allergen-specific γδ T cell activation patterns and gene expression profiles. While CR extract activated both Vδ1 and Vδ2 subsets, MO extract primarily stimulated Vδ2 cells. Our analysis revealed allergen-specific clusters with distinct functional signatures, including enhanced inflammatory responses and cytotoxic effector functions in MO-specific γδ T cells and natural killer cell-mediated immunity and IFN-γ signaling in CR-specific populations. Comparison of allergic and nonallergic individuals highlighted differences in gene expression and TCR repertoires, including a higher IFNG expression in the CR-allergic compared with nonallergic cohorts, suggesting that phenotypic and functional differences are associated with γδ T allergen responses. This study provides insights into the cellular and molecular heterogeneity and functionality of allergen-reactive γδ T cells, offering a foundation for understanding their role in allergic diseases and potential therapeutic interventions.

  • FC/FACS
  • Homo sapiens (Human)
  • Biochemistry and Molecular biology
  • Immunology and Microbiology

Adaptive immune responses against common viruses are sustained and functional in end-of-life patients.

In IScience on 21 March 2025 by Olofsson, A., Humbert, M., et al.

Viral infections occur with increased frequency in patients in palliative care, impacting their quality of life and increasing mortality rates. Still, the function of the immune system has never been thoroughly studied at the end of life. We investigated virus-specific humoral and cellular immune responses in elderly end-of-life patients (n = 38) and controls (n = 28). Virus-specific T cell responses were characterized using high-parameter flow cytometry, after stimulation with cytomegalovirus (CMV) and human coronavirus OC43 peptides. Although some virus-specific T cells from patients exhibited elevated expression of costimulatory and coinhibitory molecules, their functional profile remained largely intact compared to controls. The expression of the cytotoxic markers Granzyme B, CD107a, and 2B4 on CMV-specific T cells correlated closely with survival time. Significantly, our data demonstrate that both humoral and cellular immunity remain responsive and functional against common viruses in end-of-life patients.
© 2025 The Author(s).

  • Immunology and Microbiology

Clinical and immunological outcomes after randomized trial of baked milk oral immunotherapy for milk allergy.

In JCI Insight on 9 January 2025 by Dantzer, J. A., Lewis, S. A., et al.

BACKGROUNDCow's milk (CM) allergy is the most common food allergy in young children. Treatment with oral immunotherapy (OIT) has shown efficacy, but high rates of adverse reactions. The aim of this study was to determine whether baked milk OIT (BMOIT) could reduce adverse reactions while still inducing desensitization, and to identify immunological correlates of successful BMOIT.METHODSThis phase II, randomized trial evaluated the safety and efficacy of BMOIT in milk-allergic children 3-18 years old. After the initial placebo-controlled first year of treatment, placebo-treated participants crossed over to active BMOIT. Double-blind, placebo-controlled oral food challenges (OFCs) were conducted with BM after year 1 and to both BM and unheated milk (UM) after year 2. IgG and IgE antibodies were measured along with CM-specific (CM+) CD4+ memory T cell populations, profiled using flow cytometry and scRNA-Seq.RESULTSTwenty-one of 30 (70%) reached the primary endpoint of tolerating 4044 mg of BM protein at month 24, and 11 of 30 tolerated 2000 mg or more of UM protein. Dosing symptoms were common, but more than 98% were mild, with no severe reactions. Immunological changes associated with desensitization included increased CM IgG4, CM+ FOXP3+ cells, and Tregs and corresponding decreases in CM IgE, CM+ Th2A cells, and CD154+ cells. T cell and antibody measurements were combined to build a model that predicted UM OFC outcomes.CONCLUSIONBMOIT was well tolerated and induced desensitization to BM and UM. This desensitization corresponded to redistribution within antigen-specific antibody and T cell compartments that provided insight into the mechanistic changes that occur with OIT treatment.TRIAL REGISTRATIONClinicalTrials.gov NCT03462030.FUNDING: Myra Reinhardt Family Foundation (grant number 128388), NIH/NIAID (U19AI135731, T32AI125179, S10OD025052).

  • Homo sapiens (Human)
  • Immunology and Microbiology

Identification and isolation of antigen-specific T cells for downstream transcriptomic analysis is key for various immunological studies. Traditional methods using major histocompatibility complex (MHC) multimers are limited by the number of predefined immunodominant epitopes and MHC matching of the study subjects. Activation-induced markers (AIM) enable highly sensitive detection of rare antigen-specific T cells irrespective of the availability of MHC multimers. Herein, we have developed an AIM assay for the detection, sorting and subsequent single-cell RNA sequencing (scRNA-seq) analysis of hepatitis C virus (HCV)-specific T cells. We examined different combinations of the activation markers CD69, CD40L, OX40, and 4-1BB at 6, 9, 18 and 24 h post stimulation with HCV peptide pools. AIM+ CD4 T cells exhibited upregulation of CD69 and CD40L as early as 6 h post-stimulation, while OX40 and 4-1BB expression was delayed until 18 h. AIM+ CD8 T cells were characterized by the coexpression of CD69 and 4-1BB at 18 h, while the expression of CD40L and OX40 remained low throughout the stimulation period. AIM+ CD4 and CD8 T cells were successfully sorted and processed for scRNA-seq analysis examining gene expression and T cell receptor (TCR) usage. scRNA-seq analysis from this one subject revealed that AIM+ CD4 T (CD69+ CD40L+) cells predominantly represented Tfh, Th1, and Th17 profiles, whereas AIM+ CD8 T (CD69+ 4-1BB+) cells primarily exhibited effector and effector memory profiles. TCR analysis identified 1023 and 160 unique clonotypes within AIM+ CD4 and CD8 T cells, respectively. In conclusion, this approach offers highly sensitive detection of HCV-specific T cells that can be applied for cohort studies, thus facilitating the identification of specific gene signatures associated with infection outcome and vaccination.

  • Genetics
  • Immunology and Microbiology

Single-cell CAR T atlas reveals type 2 function in 8-year leukaemia remission.

In Nature on 1 October 2024 by Bai, Z., Feng, B., et al.

Despite a high response rate in chimeric antigen receptor (CAR) T cell therapy for acute lymphocytic leukaemia (ALL)1-3, approximately 50% of patients relapse within the first year4-6, representing an urgent question to address in the next stage of cellular immunotherapy. Here, to investigate the molecular determinants of ultralong CAR T cell persistence, we obtained a single-cell multi-omics atlas from 695,819 pre-infusion CAR T cells at the basal level or after CAR-specific stimulation from 82 paediatric patients with ALL enrolled in the first two CAR T ALL clinical trials and 6 healthy donors. We identified that elevated type 2 functionality in CAR T infusion products is significantly associated with patients maintaining a median B cell aplasia duration of 8.4 years. Analysis of ligand-receptor interactions revealed that type 2 cells regulate a dysfunctional subset to maintain whole-population homeostasis, and the addition of IL-4 during antigen-specific activation alleviates CAR T cell dysfunction while enhancing fitness at both transcriptomic and epigenomic levels. Serial proteomic profiling of sera after treatment revealed a higher level of circulating type 2 cytokines in 5-year or 8-year relapse-free responders. In a leukaemic mouse model, type 2high CAR T cell products demonstrated superior expansion and antitumour activity, particularly after leukaemia rechallenge. Restoring antitumour efficacy in type 2low CAR T cells was attainable by enhancing their type 2 functionality, either through incorporating IL-4 into the manufacturing process or by priming manufactured CAR T products with IL-4 before infusion. Our findings provide insights into the mediators of durable CAR T therapy response and suggest potential therapeutic strategies to sustain long-term remission by boosting type 2 functionality in CAR T cells.
© 2024. The Author(s).

  • FC/FACS
  • Homo sapiens (Human)
View this product on CiteAb