Product Citations: 3

Altered T-cell subset repertoire affects treatment outcome of patients with myelofibrosis.

In Haematologica on 1 September 2021 by Veletic, I., Prijić, S., et al.

Phenotypic characterization of T cells in myelofibrosis (MF) is intriguing owing to increased inflammation, markedly elevated pro-inflammatory cytokines, and altered distribution of T-cell subsets. Constitutive activation of Janus kinase-2 (JAK2) in the majority of MF patients contributes to the expression of the programmed cell death protein-1 (PD1) and T-cell exhaustion. We wondered whether T-cell activation affects treatment outcome of patients with MF and sought to determine whether the JAK1/2 inhibitor ruxolitinib affects the activation of T-cell subsets. T cells from 47 MF patients were analyzed and the percent of either helper (CD4+) or cytotoxic (CD8+) naive, central memory, effector memory, or effector T cells; and fractions of PD1-expressing cells in each subset were assessed. An increased number of T cells coexpressing CD4/PD1 and CD8/PD1 in MF compared to healthy controls (n=28) was found, and the T cells were significantly skewed toward an effector phenotype in both CD4+ and CD8+ subsets, consistent with a shift from a quiescent to an activated state. Over the course of ruxolitinib treatment, the distribution of aberrant T-cell subsets significantly reversed towards resting cell phenotypes. CD4+ and CD8+ subsets at baseline correlated with monocyte and platelet counts, and their PD1-positive fractions correlated with leukocyte counts and spleen size. Low numbers of PD1+/CD4+ and PD1+/CD8+ cells were associated with complete resolution of palpable splenomegaly and improved survival rate, suggesting that low levels of exhausted T cells confer a favorable response to ruxolitinib treatment.

  • Cardiovascular biology
  • Immunology and Microbiology

The latent HIV-1 viral reservoir in resting CD4+ (rCD4+) T cells represents a major barrier to an HIV-1 cure. There is an ongoing effort to identify therapeutic approaches that will eliminate or reduce the size of this reservoir. However, clinical investigators lack an assay to determine whether or not a decrease in the latent reservoir has been achieved. Therefore, it is critical to develop assays that can reproducibly quantify the reservoir size and changes therein, in participant's blood during a therapeutic trial. Quantification of the latent HIV viral reservoir requires a highly sensitive, cost-effective assay capable of measuring the low frequency of rCD4+ T cells carrying functional provirus. Preferably, such an assay should be such that it can be adopted for high throughput and could be adopted under conditions for use in large-scale clinical trials. While PCR-based assays are commonly used to quantify pro-viral DNA or intracellular RNA transcript, they cannot distinguish between replication-competent and defective proviruses. We have recently published a study where a reporter cell-based assay (termed TZA or TZM-bl based quantitative assay) was used to quantify inducible replication-competent latent HIV-1 in blood. This assay is more sensitive, cost-efficient, and faster than available technology, including the quantitative viral outgrowth assay or the Q-VOA. Using this assay, we show that the size of the inducible latent HIV-1 reservoir in virally suppressed participants on ART is approximately 70-fold larger than previous estimates. We describe here in detail an optimized method to quantitate latently infected cells using the TZA.

  • Immunology and Microbiology

Expression of the innate immune receptor LILRB5 on monocytes is associated with mycobacteria exposure.

In Scientific Reports on 24 February 2016 by Hogan, L. E., Jones, D. C., et al.

Antigen presenting cells (APC) are critical components of innate immunity and consequently shape the adaptive response. Leukocyte Ig Like Receptors (LILR) are innate immune receptors predominantly expressed on myeloid cells. LILR can influence the antigen presenting phenotype of monocytic cells to determine the nature of T cell responses in infections including Mycobaterium leprae. We therefore investigated the relevance of LILR in the context of Mycobacterium tuberculosis. Real-time PCR studies indicated that the transcriptional profile of the orphan receptor LILRB5 was significantly up-regulated following exposure to mycobacteria. Furthermore, LILRA1 and LILRB5 were able to trigger signalling through direct engagement of mycobacteria using tranfectant cells incorporating a reporter system. We describe for the first time the expression of this receptor on T cells, and highlight the potential relevance to mycobacterial recognition. Furthermore, we demonstrate that crosslinking of this receptor on T cells increases proliferation of cytotoxic, but not helper, T cells.

  • Immunology and Microbiology
View this product on CiteAb