Product Citations: 48

Aberrant zonal recycling of germinal center B cells impairs appropriate selection in lupus.

In Cell Reports on 26 November 2024 by Sanchez, G. M., Hirsch, E. S., et al.

Autoimmune diseases such as lupus are characterized by polyclonal B cell activation, leading to the production of autoantibodies. The mechanism leading to B cell dysregulation is unclear; however, the defect may lie in selection within germinal centers (GCs). GC B cells cycle between proliferation and mutation in the dark zone and selection in the light zone (LZ). Temporal assessment of GCs from mice with either persistent infection or lupus showed an accumulation of LZ B cells. Yet, only in lupus, GC B cells exhibited reduced proliferation and progressive loss of MYC and FOXO1, which regulate zonal recycling and differentiation. As lupus progressed, decreased mutational frequency and repertoire diversity were associated with reduced responsiveness to CD40 signaling, despite accumulation of plasma cells. Collectively, these findings suggest that lupus disease progression coincides with an intrinsic defect in LZ B cell signaling, altering the zonal recycling, selection, and differentiation of autoreactive B cells.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

Transcription factor Tox2 is required for metabolic adaptation and tissue residency of ILC3 in the gut.

In Immunity on 14 May 2024 by Das, A., Martinez-Ruiz, G. U., et al.

Group 3 innate lymphoid cells (ILC3) are the major subset of gut-resident ILC with essential roles in infections and tissue repair, but how they adapt to the gut environment to maintain tissue residency is unclear. We report that Tox2 is critical for gut ILC3 maintenance and function. Gut ILC3 highly expressed Tox2, and depletion of Tox2 markedly decreased ILC3 in gut but not at central sites, resulting in defective control of Citrobacter rodentium infection. Single-cell transcriptional profiling revealed decreased expression of Hexokinase-2 in Tox2-deficient gut ILC3. Consistent with the requirement for hexokinases in glycolysis, Tox2-/- ILC3 displayed decreased ability to utilize glycolysis for protein translation. Ectopic expression of Hexokinase-2 rescued Tox2-/- gut ILC3 defects. Hypoxia and interleukin (IL)-17A each induced Tox2 expression in ILC3, suggesting a mechanism by which ILC3 adjusts to fluctuating environments by programming glycolytic metabolism. Our results reveal the requirement for Tox2 to support the metabolic adaptation of ILC3 within the gastrointestinal tract.
Published by Elsevier Inc.

  • Biochemistry and Molecular biology
  • Cell Biology
  • Immunology and Microbiology

Lung-resident memory B cells (lung-BRMs) differentiate into plasma cells after reinfection, providing enhanced pulmonary protection. Here, we investigated the determinants of lung-BRM differentiation upon influenza infection. Kinetic analyses revealed that influenza nucleoprotein (NP)-specific BRMs preferentially differentiated early after infection and required T follicular helper (Tfh) cell help. BRM differentiation temporally coincided with transient interferon (IFN)-γ production by Tfh cells. Depletion of IFN-γ in Tfh cells prevented lung-BRM differentiation and impaired protection against heterosubtypic infection. IFN-γ was required for expression of the transcription factor T-bet by germinal center (GC) B cells, which promoted differentiation of a CXCR3+ GC B cell subset that were precursors of lung-BRMs and CXCR3+ memory B cells in the mediastinal lymph node. Absence of IFN-γ signaling or T-bet in GC B cells prevented CXCR3+ pre-memory precursor development and hampered CXCR3+ memory B cell differentiation and subsequent lung-BRM responses. Thus, Tfh-cell-derived IFN-γ is critical for lung-BRM development and pulmonary immunity, with implications for vaccination strategies targeting BRMs.
Copyright © 2023 Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

Soluble CTLA-4 mainly produced by Treg cells inhibits type 1 inflammation without hindering type 2 immunity to allow for inflammation resolution

Preprint on BioRxiv : the Preprint Server for Biology on 26 May 2023 by Osaki, M. & Sakaguchi, S.

CTLA-4 exists as membrane (mCTLA-4) and soluble (sCTLA-4) forms. Here, we show that effector-type regulatory T cells (Tregs) are main sCTLA-4 producers in basal and inflammatory states with distinct kinetics upon TCR stimulation. Mice specifically deficient in sCTLA-4 production exhibited spontaneous activation of Th1, Th17, Tfh, and Tc1 cells, autoantibody and IgE production, M1-like macrophage polarization, and impaired wound healing. In contrast, sCTLA-4-intact mCTLA-4-deficient mice, when compared with double-deficient mice, developed milder systemic inflammation and showed predominant activation/differentiation of Th2, M2-like macrophages, and eosinophils. Consistently, recombinant sCTLA-4 inhibited in vitro differentiation of naïve T cells towards Th1 through CD80/CD86 blockade on antigen-presenting cells, but did not affect Th2 differentiation. Moreover, sCTLA-4-intact mCTLA-4-deficient Tregs effectively suppressed Th1-mediated experimental colitis whereas double-deficient Tregs did not. Thus, sCTLA-4 production by Tregs during chronic inflammation is instrumental in controlling type 1 immunity while allowing type 2 immunity to dominate and facilitate inflammation resolution.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

SARS-CoV-2 Omicron boosting induces de novo B cell response in humans.

In Nature on 1 May 2023 by Alsoussi, W. B., Malladi, S. K., et al.

The primary two-dose SARS-CoV-2 mRNA vaccine series are strongly immunogenic in humans, but the emergence of highly infectious variants necessitated additional doses and the development of vaccines aimed at the new variants1-4. SARS-CoV-2 booster immunizations in humans primarily recruit pre-existing memory B cells5-9. However, it remains unclear whether the additional doses induce germinal centre reactions whereby re-engaged B cells can further mature, and whether variant-derived vaccines can elicit responses to variant-specific epitopes. Here we show that boosting with an mRNA vaccine against the original monovalent SARS-CoV-2 mRNA vaccine or the bivalent B.1.351 and B.1.617.2 (Beta/Delta) mRNA vaccine induced robust spike-specific germinal centre B cell responses in humans. The germinal centre response persisted for at least eight weeks, leading to significantly more mutated antigen-specific bone marrow plasma cell and memory B cell compartments. Spike-binding monoclonal antibodies derived from memory B cells isolated from individuals boosted with either the original SARS-CoV-2 spike protein, bivalent Beta/Delta vaccine or a monovalent Omicron BA.1-based vaccine predominantly recognized the original SARS-CoV-2 spike protein. Nonetheless, using a more targeted sorting approach, we isolated monoclonal antibodies that recognized the BA.1 spike protein but not the original SARS-CoV-2 spike protein from individuals who received the mRNA-1273.529 booster; these antibodies were less mutated and recognized novel epitopes within the spike protein, suggesting that they originated from naive B cells. Thus, SARS-CoV-2 booster immunizations in humans induce robust germinal centre B cell responses and can generate de novo B cell responses targeting variant-specific epitopes.
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

  • COVID-19
  • Immunology and Microbiology
View this product on CiteAb