Product Citations: 4

Intratumor microbiome-derived butyrate promotes lung cancer metastasis.

In Cell Reports Medicine on 16 April 2024 by Ma, Y., Chen, H., et al.

Most recurrences of lung cancer (LC) occur within 3 years after surgery, but the underlying mechanism remains unclear. Here, we collect LC tissues with shorter (<3 years, recurrence group) and longer (>3 years, non-recurrence group) recurrence-free survival. By using 16S sequencing, we find that intratumor microbiome diversity is lower in the recurrence group and butyrate-producing bacteria are enriched in the recurrence group. The intratumor microbiome signature and circulating microbiome DNA can accurately predict LC recurrence. We prove that intratumor injection of butyrate-producing bacteria Roseburia can promote subcutaneous tumor growth. Mechanistically, bacteria-derived butyrate promotes LC metastasis by increasing expression of H19 in tumor cells through inhibiting HDAC2 and increasing H3K27 acetylation at the H19 promoter and inducing M2 macrophage polarization. Depletion of macrophages partially abolishes the metastasis-promoting effect of butyrate. Our results provide evidence for the cross-talk between the intratumor microbiome and LC metastasis and suggest the potential prognostic and therapeutic value of the intratumor microbiome.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

  • FC/FACS
  • Cancer Research

Decellularized scaffolds are promising biomaterials for tissue and organ reconstruction; however, strategies to effectively suppress the host immune responses toward these implants, particularly those without chemical crosslinking, remain warranted. Administration of mesenchymal stem cells is effective against immune-mediated inflammatory disorders. Herein, we investigated the effect of isogeneic abdominal adipose-derived mesenchymal stem/stromal cells (ADMSCs) on xenogeneic biomaterial-induced immunoreactions. Peripheral bronchi from pigs, decellularized using a detergent enzymatic method, were engrafted onto tracheal defects of Brown Norway (BN) rats. BN rats were implanted with native pig bronchi (Xenograft group), decellularized pig bronchi (Decellularized Xenograft), or Decellularized Xenograft and ADMSCs (Decellularized Xenograft+ADMSC group). In the latter group, ADMSCs were injected intravenously immediately post implantation. Harvested graft implants were assessed histologically and immunohistochemically. We found that acute rejections were milder in the Decellularized Xenograft and Decellularized Xenograft+ADMSC groups than in the Xenograft group. Mild inflammatory cell infiltration and reduced collagen deposition were observed in the Decellularized Xenograft+ADMSC group. Additionally, ADMSC administration decreased CD8+ lymphocyte counts but increased CD163+ cell counts. In the Decellularized Xenograft+ADMSC group, serum levels of vascular endothelial growth factor and IL-10 were elevated and tissue deposition of IgM and IgG was low. The significant immunosuppressive effects of ADMSCs illustrate their potential use as immunosuppressive agents for xenogeneic biomaterial-based implants.

  • Rattus norvegicus (Rat)
  • Immunology and Microbiology
  • Stem Cells and Developmental Biology
  • Veterinary Research

Timing of Mesenchymal Stromal Cell Therapy Defines its Immunosuppressive Effects in a Rat Lung Transplantation Model.

In Cell Transplantation on 11 November 2023 by Tanoue, Y., Tsuchiya, T., et al.

Cell therapy using mesenchymal stromal cells (MSCs) is being studied for its immunosuppressive effects. In organ transplantation, the amount of MSCs that accumulate in transplanted organs and other organs may differ depending on administration timing, which may impact their immunosuppressive effects. In vitro, adipose-derived mesenchymal stem cells (ADMSCs) suppress lymphocyte activation under cell-to-cell contact conditions. However, in vivo, it is controversial whether ADMSCs are more effective in accumulating in transplanted organs or in secondary lymphoid organs. Herein, we aimed to investigate whether the timing of ADMSC administration affects its immunosuppression ability in a rat lung transplantation model. In the transplantation study, rats were intramuscularly administered half the usual dose of tacrolimus (0.5 mg/kg) every 24 h after lung transplantation. ADMSCs (1 × 106) were administered via the jugular vein before (PreTx) or after (PostTx) transplantation. Cell tracking using quantum dots was performed. ADMSCs accumulated predominantly in the lung and liver; fewer ADMSCs were distributed in the grafted lung in the PreTx group than in the PostTx group. The rejection rate was remarkably low in the ADMSC-administered groups, particularly in the PostTx group. Serum tumor necrosis factor-α (TNF-α), interferon-γ, and interleukin (IL)-6 levels showed a greater tendency to decrease in the PreTx group than in the PostTx group. The proportion of regulatory T cells in the grafted lung 10 days after transplantation was higher in the PostTx group than in the PreTx group. PostTx administration suppresses rejection better than PreTx administration, possibly due to regulatory T cell induction by ADMSCs accumulated in the transplanted lungs, suggesting a mechanism different from that in heart or kidney transplantation that PreTx administration is more effective than PostTx administration. These results could help establish cell therapy using MSCs in lung transplantation.

FXR agonist GW4064 enhances anti-PD-L1 immunotherapy in colorectal cancer.

In Oncoimmunology on 1 June 2023 by Lu, L., Jiang, Y. X., et al.

Colorectal cancer (CRC) is one of the top three malignant tumors in terms of morbidity, and the limited efficacy of existing therapies urges the discovery of potential treatment strategies. Immunotherapy gradually becomes a promising cancer treatment method in recent decades; however, less than 10% of CRC patients could really benefit from immunotherapy. It is pressing to explore the potential combination therapy to improve the immunotherapy efficacy in CRC patients. It is reported that Farnesoid X receptor (FXR) is deficiency in CRC and associated with immunity. Herein, we found that GW4064, a FXR agonist, could induce apoptosis, block cell cycle, and mediate immunogenic cell death (ICD) of CRC cells in vitro. Disappointingly, GW4064 could not suppress the growth of CRC tumors in vivo. Further studies revealed that GW4064 upregulated PD-L1 expression in CRC cells via activating FXR and MAPK signaling pathways. Gratifyingly, the combination of PD-L1 antibody with GW4064 exhibited excellent anti-tumor effects in CT26 xenograft models and increased CD8+ T cells infiltration, with 33% tumor bearing mice cured. This paper illustrates the potential mechanisms of GW4064 to upregulate PD-L1 expression in CRC cells and provides important data to support the combination therapy of PD-L1 immune checkpoint blockade with FXR agonist for CRC patients.
© 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.

  • FC/FACS
  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb