Product Citations: 7

Epstein-Barr virus (EBV) is associated with infectious mononucleosis, cancer, and multiple sclerosis. A vaccine that prevents infection and/or EBV-associated morbidity is an unmet need. The viral gH/gL glycoprotein complex is essential for infectivity, making it an attractive vaccine target. Here, we evaluate the immunogenicity of a gH/gL nanoparticle vaccine adjuvanted with the Sigma Adjuvant System (SAS) or a saponin/monophosphoryl lipid A nanoparticle (SMNP) in rhesus macaques. Formulation with SMNP elicits higher titers of neutralizing antibodies and more vaccine-specific CD4+ T cells. All but one animal in the SMNP group were infected after oral challenge with the EBV ortholog rhesus lymphocryptovirus (rhLCV). Their immune plasma had a 10- to 100-fold lower reactivity against rhLCV gH/gL compared to EBV gH/gL. Anti-EBV neutralizing monoclonal antibodies showed reduced binding to rhLCV gH/gL, demonstrating that EBV gH/gL neutralizing epitopes are poorly conserved on rhLCV gH/gL. Prevention of rhLCV infection despite antigenic disparity supports clinical development of gH/gL nanoparticle vaccines against EBV.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

Generation of chimeric antigen receptor macrophages from human pluripotent stem cells to target glioblastoma.

In Immunooncol Technol on 1 December 2023 by Jin, G., Chang, Y., et al.

Glioblastoma (GBM) is an aggressive brain tumor giving a poor prognosis with the current treatment options. The advent of chimeric antigen receptor (CAR) T-cell therapy revolutionized the field of immunotherapy and has provided a new set of therapeutic options for refractory blood cancers. In an effort to apply this therapeutic approach to solid tumors, various immune cell types and CAR constructs are being studied. Notably, macrophages have recently emerged as potential candidates for targeting solid tumors, attributed to their inherent tumor-infiltrating capacity and abundant presence in the tumor microenvironment.
In this study, we developed a chemically defined differentiation protocol to generate macrophages from human pluripotent stem cells (hPSCs). A GBM-specific CAR was genetically incorporated into hPSCs to generate CAR hPSC-derived macrophages.
The CAR hPSC-derived macrophages exhibited potent anticancer activity against GBM cells in vitro.
Our findings demonstrate the feasibility of generating functional CAR-macrophages from hPSCs for adoptive immunotherapy, thereby opening new avenues for the treatment of solid tumors, particularly GBM.
© 2023 The Author(s).

  • FC/FACS
  • Immunology and Microbiology
  • Stem Cells and Developmental Biology

Neutrophils, the most abundant white blood cells in circulation, are closely related to cancer development and progression. Healthy primary neutrophils present potent cytotoxicity against various cancer cell lines through direct contact and via generation of reactive oxygen species. However, due to their short half-life and resistance to genetic modification, neutrophils have not yet been engineered with chimeric antigen receptors (CARs) to enhance their antitumor cytotoxicity for targeted immunotherapy. Here, we genetically engineered human pluripotent stem cells with synthetic CARs and differentiated them into functional neutrophils by implementing a chemically defined platform. The resulting CAR neutrophils present superior and specific cytotoxicity against tumor cells both in vitro and in vivo. Collectively, we established a robust platform for massive production of CAR neutrophils, paving the way to myeloid cell-based therapeutic strategies that would boost current cancer-treatment approaches.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

  • FC/FACS
  • Homo sapiens (Human)
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology
  • Stem Cells and Developmental Biology

Capturing 3D Chromatin Maps of Human Primary Monocytes: Insights From High-Resolution Hi-C.

In Frontiers in Immunology on 22 March 2022 by Xia, Y., Liu, X., et al.

Although the variation in chromatin architecture during adaptive immune responses has been thoroughly investigated, the 3D landscape of innate immunity is still unknown. Herein, chromatin regulation and heterogeneity among human primary monocytes were investigated. Peripheral blood was collected from two healthy persons and two patients with systemic lupus erythematosus (SLE), and CD14+ monocytes were selected to perform Hi-C, RNA-seq, ATAC-seq and ChIP-seq analyses. Raw data from the THP1 cell line Hi-C library were used for comparison. For each sample, we constructed three Hi-C libraries and obtained approximately 3 billion paired-end reads in total. Resolution analysis showed that more than 80% of bins presented depths greater than 1000 at a 5 kb resolution. The constructed high-resolution chromatin interaction maps presented similar landscapes in the four individuals, which showed significant divergence from the THP1 cell line chromatin structure. The variability in chromatin interactions around HLA-D genes in the HLA complex region was notable within individuals. We further found that the CD16-encoding gene (FCGR3A) is located at a variable topologically associating domain (TAD) boundary and that chromatin loop dynamics might modulate CD16 expression. Our results indicate both the stability and variability of high-resolution chromatin interaction maps among human primary monocytes. This work sheds light on the potential mechanisms by which the complex interplay of epigenetics and spatial 3D architecture regulates chromatin in innate immunity.
Copyright © 2022 Xia, Liu, Mu, Ma, Wang, Jiao, Cui, Hu, Gao, Liu, Sun, Zong, Liu and Zhao.

  • Homo sapiens (Human)
  • Immunology and Microbiology

Neutral sphingomyelinase 2 regulates inflammatory responses in monocytes/macrophages induced by TNF-α.

In Scientific Reports on 8 October 2020 by Al-Rashed, F., Ahmad, Z., et al.

Obesity is associated with elevated levels of TNF-α and proinflammatory CD11c monocytes/macrophages. TNF-α mediated dysregulation in the plasticity of monocytes/macrophages is concomitant with pathogenesis of several inflammatory diseases, including metabolic syndrome, but the underlying mechanisms are incompletely understood. Since neutral sphingomyelinase-2 (nSMase2: SMPD3) is a key enzyme for ceramide production involved in inflammation, we investigated whether nSMase2 contributed to the inflammatory changes in the monocytes/macrophages induced by TNF-α. In this study, we demonstrate that the disruption of nSMase activity in monocytes/macrophages either by chemical inhibitor GW4869 or small interfering RNA (siRNA) against SMPD3 results in defects in the TNF-α mediated expression of CD11c. Furthermore, blockage of nSMase in monocytes/macrophages inhibited the secretion of inflammatory mediators IL-1β and MCP-1. In contrast, inhibition of acid SMase (aSMase) activity did not attenuate CD11c expression or secretion of IL-1β and MCP-1. TNF-α-induced phosphorylation of JNK, p38 and NF-κB was also attenuated by the inhibition of nSMase2. Moreover, NF-kB/AP-1 activity was blocked by the inhibition of nSMase2. SMPD3 was elevated in PBMCs from obese individuals and positively corelated with TNF-α gene expression. These findings indicate that nSMase2 acts, at least in part, as a master switch in the TNF-α mediated inflammatory responses in monocytes/macrophages.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology
View this product on CiteAb